
An Approach to Completing Variable Names
for Implicitly Typed Functional Languages

Takumi Goto Isao Sasano
Shibaura Institute of Technology

Tokyo, Japan
{m110057, sasano}@sic.shibaura-it.ac.jp

Abstract
This paper presents an approach to completing variable names
when writing programs in implicitly typed functional languages.
As a first step toward developing practical systems, we considered
a simple case: up to the cursor position the program text is given
completely. With this assumption we specify a variable completion
problem for an implicitly typed core functional language with let-
polymorphism and show an algorithm for solving the problem.
Based on the algorithm we have implemented a variable name
completion system for the language as an Emacs-mode.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.2.3 [Software Engineering]: Coding Tools and Techniques—
Program editors

General Terms Reliability, Theory, Languages

Keywords polymorphic language, type inference, Emacs-mode,
variable name completion

1. Introduction
Integrated development environments (IDE) play an important role
in developing large software. IDEs provide functionalities includ-
ing automatic indentation, keyword highlighting, variable name
completion, and so on. Among them one of the most basic and con-
venient functionalities is variable name completion: when inputting
a variable name, candidates for the variable names that start with
the string which has been input are shown on a pop-up window
for example. In developing large programs, we tend to use long
names especially for variables with long scopes for enhancing the
program readability, and in such cases variable name completion
substantially decreases the time for recalling the variable names as
well as the amount of keyboard typing or spelling errors. Up to now
IDEs for commonly-used languages like Java, C, C++ have been
well developed while not so much for functional programming lan-
guages. Functional languages are now getting to be used widely so
that IDEs for them are strongly expected.

IDEs should be designed and implemented reliably as well as
compilers, since otherwise people may not want to use them. Espe-

Copyright c© ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ACM SIGPLAN 2012 Workshop on Partial Evaluation and
Program Manipulation (PEPM’12), January 23-24, 2012, Philadelphia, Pennsylvania,
USA, http://doi.acm.org/10.1145/2103746.2103771.

cially IDEs for statically typed functional languages are expected
to utilize the feature of being statically typed. Reflecting typing in-
formation on variable name completion reduces the number of can-
didates for completion, as well as decreases type errors and spelling
errors. Actually IDEs for Java, including Java IDE on Eclipse, pro-
vide member variable or method name completion, after typing
dot, with type information (class definition) reflected. In explicitly
typed languages like Java, type information can be directly com-
puted from the program text. In implicitly typed languages,i.e.,
those which allow either annotating or not annotating types to vari-
able declarations, it is not so obvious how to design variable com-
pletion mechanism with type information reflected, since we need
to do type inference in some way when completing variable names.

In developing small programs, purely syntactic variable com-
pletion may work well without using type information. Our inten-
tion is to complete variable names that are defined in some libraries
or some other program modules. For example, let us consider the
case where a programmer is writing a program fragment that prints
some integer value. In Standard ML she might write the fragment
as follows1.

print (Int.

Here let us suppose that she does not recall the function name that
converts an integer to the corresponding string but remembers the
structure nameInt inside which the function is declared. In this
situation there are 29 candidates since the structureInt has 29
declarations. By using type information, the candidates are reduced
to two since the functionprint takes a value of string type as its
argument and the structureInt has only two functions that may
return a value of string type:fmt andtoString.

In this paper we present a basic mechanism of variable name
completion for an implicitly typed ML-like core functional lan-
guage. In order to filter candidates by type information, we need
to do type inference for incomplete programs. While various set-
tings can be considered, we consider a simple case: up to the cur-
sor position, the program text is given completely. More precisely,
we assume that the input programs before the cursor position do
not have any syntax error or type error. When computing candi-
dates for variable names to be completed we only use the program
text before the cursor position and ignore the text after the cursor
position. This simple approach works well for ML-like languages
since all the variables are declared syntactically before their use in
ML-like languages except for (mutually) recursive declarations. In
the future we may extend the approach to use the program text af-
ter the cursor position for supporting Haskell-like languages where
variables may appear syntactically before their declarations.

1 Although our current system does not deal with programs with structures
(or modules), here we use this example since it is a typical case where
filtering with types effectively reduces the number of candidates.

If the system might sometimes eliminate valid candidates, it
would be confusing since the programmer would have to consider
whether or not some valid candidates may exist other than the
candidates in the pop-up window. So it is strongly desired for the
variable name completion system to have the property that all the
possible variables are shown as candidates. On the other hand,
variable name completion system is expected to eliminate all the
variables that cause type error for whatever program text is input
after the cursor position. In Section 7 we state as conjectures that
our solution presented in this paper satisfies these two properties.

As for the cost of inferring types for partial programs, we con-
struct an efficient partial type inference algorithm while retaining
the above two properties. It is sufficient to do type inference for
each variable that is within its scope at the cursor position, but it
includes many redundant computation. As will be presented in Sec-
tion 5, our partial type inference algorithm appropriately abstracts
types of variables that are within their scope at the cursor position,
which results in an efficient algorithm suitable for practical use.

Based on the mechanism we present, we have implemented
variable name completion as an Emacs mode for the ML-like core
language. Our experiment shows that our mechanism works well
at least for the core language. Currently we apply the algorithm
for computing candidates every time when some character is input
on Emacs. We expect that the algorithm can be incrementalized by
reusing the previous computation, which we leave as future work.

The rest of the paper is organized as follows. Section 2 specifies
the variable completion problem we solve. Section 3 shows our ba-
sic ideas and outline of our solution. Section 4 describes the term
completion phase by introducing two abstractions, dummy nodes
and marked nodes. Section 5 describes the type inference algo-
rithm. Section 6 describes the phase for filtering by type constraint
and the (partial) spelling of the variable name being input at the
cursor position. Section 7 summarizes the algorithm and gives the
properties of our algorithm. Section 8 describes our implementa-
tion as an Emacs mode for a small subset of Standard ML. Section
9 describes some experimental results. Section 10 discusses about
related work. Section 11 describes future work and concludes the
paper.

2. Specification of variable completion problem
In this section we specify the problem that we solve in this paper.
We use the following core language on which we specify the prob-
lem.

M ::= x | c | λx.M | M M | (M)
| let x = M in M end | fix x.M

Herex represents a variable,c represents a constant,λx.M rep-
resents a function abstraction,M M represents a function appli-
cation, let x = M in M end represents a let expression, and
fix x.M represents a fix expression. For simplicity we suppose
constants are+ and- of type int → int → int and natural num-
bers of typeint. We have explicitly included the parentheses in the
core language in order to express situations where there are open
parentheses not yet closed. For simplicity we only consider the pro-
gram without type annotations.

We consider the following types for the core language.

σ := ∀α1 . . . αn.τ τ := int | α | τ → τ

The types consist of the integer typeint, type variables, function
types, and polymorphic types. Here we usedσ as a meta variable
for representing a polymorphic type andτ as a meta variable for
representing a monomorphic type. Whenσ = ∀α1 . . . αn.τ0 and
there exists someτ1, . . . , τn such thatτ = [τ1/α1 . . . τn/αn]τ0,
we callτ as an instance of the polymorphic typeσ and writeτ < σ.

(const) Γ . c : τ (c : τ ∈ Const)
(var) Γ{x : σ} . x : τ if τ < σ

(app)
Γ . M1 : τ1 → τ2 Γ . M2 : τ1

Γ . M1 M2 : τ2

(abs)
Γ{x : τ1} . M : τ2

Γ . λx.M : τ1 → τ2

(let)
Γ . M1 : τ1 Γ{x1 : Cls(Γ, τ1)} . M2 : τ2

Γ . let x1 = M1in M2 end : τ2

(fix)
Γ{x : τ} . M : τ
Γ . fix x.M : τ

Figure 1. Type system for the core language

pre : M → {(P, x)}
pre c = {}
prex = {(s, x) | s is a prefix of x}
pre (M1 M2) = {(M1 P2, x2) | (P2, x2) ∈ preM2}∪

{(P1, x1) | (P1, x1) ∈ preM1}
pre (λx.M) = {(λx.P, x1) | (P, x1) ∈ preM}
pre (let x = M1 in M2 end) =

{(let x = M1 in P2, x2) | (P2, x2) ∈ preM2}∪
{(let x = P1, x1) | (P1, x1) ∈ preM1}

pre (fix x.M) = {(fix x.P, x1) | (P, x1) ∈ preM}
pre ((M)) = {((P, x1) | (P, x1) ∈ preM}

Figure 2. Functionpre for prefix relation

We use a usual ML-style type system with let-polymorphism
given in Figure 1, where we omit the case for(M). As usual we
write Γ . M : τ for a type judgment that a termM has a typeτ
under a type environmentΓ. A type environment is a mapping from
variables to types. When we add a mapping from a variablex to a
typeτ to a type environmentΓ, we writeΓ{x : τ}. We can obtain
the type of a variablex under a type environmentΓ by Γ(x). Cls is
a function that takes a type environmentΓ and a typeτ and returns
∀α1 · · ·αn. τ whenFTV (τ) \ FTV (Γ) = {α1, . . . , αn}, where
FTV takes a typeτ or a type environmentΓ and returns a set of
free type variables in it.Constis a set of types of constants.

As we mentioned in Section 1, we only use the program text
before the cursor position. In order to represent such an incom-
plete program text we introduce the followingprefix of the core
language.

P ::= | λx.P | M P | (P
| let x = M in P | let x = P | fix x.P

Here we introduced a cursor node, which corresponds to the
cursor position in the program being written. For simplicity we
only complete variable names and do not complete keywords or
constants, so the cursor nodecorresponds to a variable and does
not correspond to constants or any other constructs. Each of the
prefix terms defined above ends with the cursor node. The cursor
node has as its attribute the (partial) spelling of a variable now
being input. The spelling may be an empty spelling, which we write
ε. We may write the spelling as the subscript of the cursor node like
f and ε when necessary.

Here we formally specify the prefix relation betweenP andM ,
with the variable name being input at the cursor position, by the
function pre in Figure 2. The functionpre takes a termM and
returns all the prefix terms ofM , each of which is paired with a
variable name being focused on. Note thatpre returns the empty
set for the case of constantc since we do not complete constants.
Note also that we do not complete the identifiers bound at function
abstractions or declarations, which is reflected in the definition

of pre. We show an example forpre. By applyingpre to a term
(λabc. abc) 1, we obtain the following set.

{((λabc. ε, abc), ((λabc. a, abc),
((λabc. ab, abc), ((λabc. abc, abc)}

The constant1 is not included in this result sincepre returns an
empty set in the case of constant.

Now we are ready to specify the problem.

PROBLEM 1 (Variable completion).Given a prefix termP and a
type environmentΓ, find a setV of variables such that∀v ∈
V, ∃M, ∃τ , Γ . M : τ, (P, v) ∈ preM.

The setV of variables are the candidates to be popped up. Most
desirable answer to the problem is thelargestsetV of variables.
Actually our algorithm for solving the problem presented in this
paper gives the largest one. Note that in practical situationsΓ
includes types of variables declared in libraries.

Let us see a simple example, where the following prefix term
(partial program)P is given.

let xx = 1 in let xy = λx.λy.x y in let xz = λx.x in xy x

The above term corresponds to the situation where we are typing a
characterx at the cursor position. Suppose the type environmentΓ
is ∅. Then candidates to be popped up have to be within their scope,
so they must be some of the variablesxx, xy, andxz. Among these
variables,xy andxz satisfy the condition whilexx does not. So
the largest set is{xy, xz}. To be concrete, the types of these three
variables areint, ∀αβ. (α → β) → α → β, and∀α. α → α,
respectively. The cursor nodex is immediately after the variable
xy, so every candidate becomes the argument of the functionxy.
By typing constraint the variablexx is excluded.

Here let us see another example, where the following prefix term
P is given.

fix xf.λxx.+ (xf (- xx 1)) (xf x

This termP corresponds to the situation where we are in the middle
of writing the definition of a recursive function. We suppose again
the type environmentΓ is ∅. There are two variables,xf andxx,
which are in the scope at the cursor position. The types ofxf and
xx areint → int andint respectively. In this case the type of the
candidates must beint since the functionxf takes as its argument
an expression(- xx 1) of typeint. So the largest set is{xx}.

3. Basic ideas
Here we show basic ideas for solving the variable completion prob-
lem. Following the problem specification, if we could generate all
the terms ofM havingP as their prefix, then by type inference we
could solve the problem. But obviously there are infinitely many
termsM . In order to reduce the number of terms generated, we
introduce the notion ofdummy node. We then give a naive pre-
liminary solution based on this notion, which may take much time
and does not necessarily produce all the candidates. By introducing
another notion ofmarked node, we reached our current solution,
which produces all the candidates in time short enough to be used
practically (see Section 9 for results of measuring time for comple-
tion).

3.1 A preliminary solution

Here we introduce the notion ofdummy node. In other words, we
generate terms ofM that additionally have as its constructs the
dummy node and cursor node. A dummy node is a placeholder for
an arbitrary term. If we could generate all the terms using dummy
nodes, we could solve the problem. But even by using dummy
nodes there are still infinitely many terms to generate. So we had to
use some threshold with respect to some criteria, e.g. the depth of

the term. Then we do type inference for each of the terms. In type
inference we assign a fresh type variable for the cursor node and
fresh type variables for dummy nodes. For each term for which type
inference succeeds, we enumerate the variables that are within their
scope and then unify each of them with the type of the cursor node.
We filter all variables for which the unification succeeds, and obtain
those variables whose prefixes match the characters currently being
typed.

Here we illustrate the naive solution by using the following
simple termP .

let ff = λx.+ x 1 in ff (f

Firstly we generate the terms each of which has the above term as
its prefix, using dummy nodes. The above term with completing a
closing parenthesis is one of the generated terms. In type checking
we assign some fresh type variableα for the cursor node f. As a
result we obtainα = int. In this caseff is the only variable that
is within its scope. Sinceff has type ofint → int, there is no
candidate in this case.

There is another possible term, which is the above term with
ff (f replaced byff (f []). Here[] indicates a dummy node,
which represents an arbitrary term that can be an argument of
the function application. In type checking we assign fresh type
variablesα andβ for f and[] respectively, and obtainα = β →
int. In this case the type offf matches against the type off, so
ff remains to be a candidate, which finally becomes a candidate to
be popped up by checkingff hasf as its prefix.

There are many other possible terms by adding function applica-
tions. One of such examples is the above term withff (f replaced
by ff (f [] []). In this case the type of the cursor node becomes
α → β → int, which does not match with the type offf.

There are actually infinitely many possible terms even by using
dummy nodes since the programmer can write infinitely many
expressions as arguments of function applications after the cursor
position. So we used some threshold with respect to the depth of the
terms and thus we may not necessarily obtain all the candidates.

We actually have implemented a system based on this naive
solution, but it took much time (e.g., 100 seconds) in some cases
and does not even necessarily generate all the candidates. So we
considered how to overcome these two points. We show the outline
of the solution we have reached in Section 3.2.

3.2 Our solution

By introducing another notion ofmarked node, which represents
conceptually zero or more function applications with dummy nodes
given as its arguments, we developed a solution that generates all
the candidates without generating infinitely many terms. In the
following, we illustrate our solution by the example above.

Since any expression can take an argument syntactically, the
preliminary solution complemented a dummy node for each sub-
term. As a result there appeared a sequence of function applications
with dummy nodes. Our idea is that this sequence can be abstracted
by marking such nodes. For the above example our new algorithm
constructs the following term by marking the nodes that can take
an argument syntactically.

(let ff = λx.+ x 1 in (ff (f
∗))∗ end)∗

Nodes with asterisk∗ are marked nodes. For example,f∗ repre-
sents f, f [], f [] [], f [] [] [], and so on, and(ff (f

∗))∗

representsff f, ff (f []), ff f [], ff (f []) [], and so on.
The type of the variableff is int → int, which is not influenced
by whatever the nodes with the asterisk∗ represent. Since the vari-
ableff is the only variable that is within the scope at the cursor
position, the possible types off∗ should be the possible types of
ff∗. Since the type offf is int → int, possible terms represented

cmp : P → D
cmp = ∗

cmp (λx.P) = λx.(cmp P)∗

cmp (M P) = (M (cmp2 P))∗

cmp (let x = M in P) = (let x = M in cmp P end)∗

cmp (let x = P) = (let x = cmp P in [] end)∗

cmp (fix x.P) = fix x.(cmp P)∗

cmp ((P) = (cmp P)∗

cmp2 : P → D
cmp2 =
cmp2 (let x = M in P) = (let x = M in cmp P end)
cmp2 (let x = P) = (let x = cmp P in [] end)
cmp2 ((P) = cmp P

Figure 3. Term completion functioncmp

by ff∗ are eitherff or ff [] in order for the term to be well typed.
The type of f

∗ must beint since f
∗ is in the argument position

of the variableff. So f
∗ can only take the form offf []. The type

of (ff (f
∗))∗ must beint since the type offf (f

∗) is int. As a
result,ff becomes the candidate in this example.

Based on this idea we develop an algorithm for the variable
completion in the following sections. The algorithm generates all
the candidates and runs substantially faster than the preliminary
naive solution.

4. Term completion with dummy nodes and
marked nodes

As the first phase of the algorithm, we generate terms that have as
their prefix the given partial termP by using dummy nodes and
marked nodes. We call this generation phase asterm completion.
We define terms that include dummy nodes and marked nodes as
follows.

D ::= | D∗ | λx.D | M D | let x = D in [] end
| let x = M in D end | fix x.D

We omit the parentheses here since terms ofD are already com-
pleted by dummy nodes[].

We define a term completion functioncmp from P to D in
Figure 3. Although we are manipulating abstract syntax we would
like to treat it in a way consistent with the concrete syntax. So we
introduce the functioncmp2 to exclude the outer most mark in the
argument part of the function applications, since otherwise function
applications would become right associative, which violates the
convention of lambda notations. Note thatcmp2 does not take
λx.P or M P since such cases do not occur according to the
convention in describing lambda terms. Also note that the result of
cmp (λx.P) is not(λx.(cmp P))∗ since an expression input after
P becomes part of the body of the lambda abstraction according to
the convention in describing lambda terms.

We illustrate the functioncmp by using an example. Suppose
the following termP is given.

let xa = λx.x 2 in let yy = λx.x in let xc = 3 in xa (x

By applyingcmp to this, we obtain the following termD.

(let xa = λx.x 2 in (let yy = λx.x in
(let xc = 3 in (xa (x

∗))∗ end)∗ end)∗ end)∗

5. Type inference
In this phase we do type inference to obtain types of the variables
and the cursor node. Our type inference algorithmV, defined in
Figure 4, is based on Milner’s type inference algorithmW [18].

The algorithmV takes a pair of a termD and a type environment
Γ and returns a set of tuples of a substitution, a type, and a pair of
type environment and type of the cursor position. A substitution is a
function from type variables to types. A substitution may be applied
to types or type environments by natural extension. We useC as a
meta variable for representing a pair of type environment and type
of the cursor position andS as a meta variable for representing a
substitution.

Our algorithm uses Milner’sW as a subroutine in the cases of
function applicationM D and let expressionlet x = M in D end.
The algorithmW takes a type environmentΓ and a termM as its
arguments and returns a substitutionS and a typeτ . WhenW suc-
ceeds the judgmentS(Γ) . M : τ holds. We omit the definition of
W . The algorithmV uses the unification algorithmU [22] in the
case of function application and fix expression, as is also the case
for W . The algorithmU takes a set of pairs of type expressions and
returns one of the most general unifiers when they are unifiable and
fails when they are not.

V is different fromW in the following points.

• The terms given as the argument include the mark, dummy, and
cursor node.

• The algorithmW returns a pair of a substitution and a type
while the algorithmV returns a set of tuples of a substitution, a
type, and a pair of the type environment at the cursor position
and a type of the cursor position.

• We have not written explicitly in the algorithmV the cases
where some unification fails, as is usual in the description of
the algorithmW. Unlike W, when some unification fails, the
entire algorithmV does not fail but just eliminates the case
when taking union of the results.

A term D that includes marked nodes, dummy nodes, or a cursor
node conceptually represents multiple terms ofM . The type in-
ference algorithmV instantiates each occurrence of the three con-
structs in an appropriate way to cover all the cases, so thatV returns
multiple results. The cursor nodeconceptually represents all the
variables that are within their scope with the types constrained by
the contexts. So for the case of the cursor node, V enumerates all
the variables in the domain ofΓ. As forarity andg, we explain later.
A marked nodeD∗ conceptually represents zero or more function
applications with dummy nodes given as its arguments. So for the
case ofD∗, V computes all the types taken from theright spineof
the types ofD, that is,at(τ) whereτ is a type ofD. The dummy
node[] conceptually represents all the terms and can thus have any
type depending on the context, so fresh type variables are generated
for the dummy node in the case oflet x = D in [] end.

In order to reduce the number of elements in the result of type
inference, the algorithmV abstracts their typesτ1 → · · · → τk,
whereτk is int or a type variable, intoα1 → · · · → αk where
α1, . . . , αk are fresh type variables. This is done by the functions
arity andg. The functionarity takes a typeτ and counts the number
of arguments, orarity, in τ . For example,arity (int → int → int)
results in 2. The functiong takesn as its argument and generates a
type that consists ofn + 1 fresh type variables connected by the
arrows. For example,g(2) results in a typeα0 → α1 → α2,
whereα0, α1, andα2 are distinct fresh type variables. Using the
functionsarity andg the algorithmV groups types of variables that
are within their scope at the cursor position into equivalence classes
with respect to the arity. This makes computations about functions
that have the same arity be performed at once. Since in typical cases
functions take a few arguments, this abstraction effectively works
for reducing redundant computations. The precise computation is
delayed until the filtering phase in Section 6.

V(Γ, D) = case D of
⇒ let T = {g(arity(Γ(x))) | x ∈ dom(Γ)} in {(∅, τ, (Γ, τ)) | τ ∈ T}

| D∗ ⇒ {(S, τ ′ , C) | (S, τ, C) ∈ V(Γ, D), τ ′ ∈ at(τ)}
| λx.D ⇒ let {(S0, τ0, C0), . . . , (Si, τi, Ci)} = V(Γ{x : α}, D) (α fresh)

in {(S0, S0(α) → τ0, C0), . . . , (Si, Si(α) → τi, Ci)}
| M D ⇒ let (S1, τ1) = W(Γ, M)

{(S2,0, τ2,0, C2,0), . . . , (S2,i, τ2,i, C2,i)} = V(S1(Γ), D)
S3,j = U{(S2,j(τ1), τ2,j → αj)} (αj fresh) (j ∈ {0, . . . , i})

in {(S3,j ◦ S2,j ◦ S1, S3,j(αj), C2,j) | j ∈ {0, . . . , i}}
| let x = D in [] end ⇒ let {(S0, τ0, C0), . . . , (Si, τi, Ci)} = V(Γ, D)

in {(S0, α0, C0), . . . , (Si, αi, Ci)} (α0, . . . , αi fresh)
| let x = M in D end ⇒ let (S1, τ1) = W(Γ, M)

{(S2,0, τ2,0, C2,0), . . . , (S2,i, τ2,i, C2,i)} = V(S1(Γ){x : Cls(S1(Γ), τ1)}, D)
in {(S2,j ◦ S1, τ2,j , C2,j) | j ∈ {0, . . . , i}}

| fix x.D ⇒ let {(S1,0, τ0, C0), . . . , (S1,i, τi, Ci)} = V(Γ{x : α}, D) (α fresh)
{S2,0, . . . , S2,i} = U(τj , S1,j(α)) (j ∈ {0, . . . , i})

in {(S2,j ◦ S1,j , τj , Cj) | j ∈ {0, . . . , i}}

arity(∀α1 . . . αn.τ) = arity(τ)
arity(τ1 → τ2) = arity(τ2) + 1
arity(α) = 0
arity(int) = 0

at(τ1 → τ2) = {τ1 → τ2} ∪ at(τ2)
at(α) = {α}
at(int) = {int}
g(n + 1) = α → g(n) (α fresh)
g(0) = α (α fresh)

Figure 4. Type inference algorithmV

The second element of the result for the case ofD∗ is the set of
all types that are taken from the right spine of the type ofD. This
reflects the situation where the productionM := M1 M2 could
be applied arbitrarily many times in the term completion phase
without using the notion of marking.

In the algorithmV we do not apply substitution to the environ-
ments and types of the cursor position while traversing the term,
but apply it to the result of the algorithmV. The environments and
types at the cursor position are obtained as follows: in each tuple
(S, τ, (Γ , τ)) in the results ofV(Γ, D), apply the substitutionS
to Γ andτ , respectively.

Let us see an example. LetD be the result of term completion
in Section 4. In the following we show the process of computing
V(∅, D). The type environment given toV can be empty since the
termD does not have free variables. WhenV encounters the cursor
expression f, the type environmentΓ for the cursor position has
been obtained as follows.

Γ = {xa : ∀α.(int → α) → α, yy : ∀α.α → α, xc : int}

The algorithmV returns the following set of two tuples when it
encounters the cursor expressionx.

{(∅, β1 → β2, (Γ , β1 → β2)), (∅, β3, (Γ , β3))}

By taking all the types from the right spine of each of the above two
typesβ1 → β2 andβ3, V returns the following set of three tuples
for x

∗.

{(∅, β1 → β2, (Γ , β1 → β2)), (∅, β2, (Γ , β1 → β2)),
(∅, β3, (Γ , β3))}

Next, whenV processesxa (x
∗) the following unifications are

tried:

S1 = U{(int → α0) → α0, (β1 → β2) → γ1)}
S2 = U{(int → α1) → α1, β2 → γ2)}
S3 = U{(int → α2) → α2, β3 → γ3)}

where the types(int → αi) → αi (i = 0, 1, 2) are instantiated
types of the functionxa. These instantiations are done in the func-
tion W. All the unifications succeed andV returns the following

set of three tuples forxa (x
∗).

{(S1, α0, (Γ , β1 → β2)), (S2, α1, (Γ , β1 → β2)),
(S3, α2, (Γ , β3))}

Eventually these three tuples become the results ofV(∅, D). As
a final step, we applyS1, S2 andS3 to β1 → β2, β1 → β2 and
β3 and obtain typesint → α0, β1 → int → α1, andint → α2

respectively, for the cursor. Similarly by applyingS1, S2 andS3 to
Γ we obtainΓ as the type environment for the cursor position.
Note that all the first elements of the third elements in the tuples
of the result of the algorithmV are the same. We show filtering for
this example in the next section.

6. Filtering candidates
In this phase we make the candidates to be shown in pop-up win-
dow. The initial candidates are taken from the variables in the do-
main of the type environmentΓ obtained in the type inference
phase. They are filtered by unifying their types with the types of
the cursor. Variables that failed to unify with any of the types of the
cursor are deleted from candidates. When a candidate has a type of
τ , we unify τ with each of the types of the cursor. When a candi-
date has a polymorphic type of∀α1 . . . αk.τ , we unify the type of
[β1/α1] . . . [βk/αk]τ (β1, . . . , βk fresh) with each of the types of
the cursor. Note that all of the types of the cursor are monomor-
phic. We finally filter the candidates by matching the spellings of
the candidates with the (partial) spelling of the variable name being
input.

We show an example for filtering candidates by using the result
of type inference in Section 5. Candidates must have a type that is
unifiable withint → α0, β1 → int → α1, or int → α2. There
are thus the following nine combinations.

U{(int → α0, (int → α5) → α5)}, (for xa)
U{(int → α0, α6 → α6)}, (for yy)
U{(int → α0, int)}, (for xc)
U{(β1 → (int → α1), (int → α5) → α5)}, (for xa)
U{(β1 → (int → α1), α6 → α6)}, (for yy)
U{(β1 → (int → α1), int)}, (for xc)

U{(int → α2, (int → α5) → α5)}, (for xa)
U{(int → α2, α6 → α6)}, (for yy)
U{(int → α2, int)} (for xc)

The second, the fourth, the fifth and the eighth unifications suc-
ceed. As a result we get two candidatesxa andyy. Among these
candidates the variablexa matches with the (partial) spellingx of
the variable name currently being input whileyy does not. So we
obtain the singleton set{xa} as the final candidate set.

There is another alternative about when filtering the candidates
with the spelling of the variable name being input: to filter them
in the first step. In the future we may incrementalize the variable
completion system by caching the intermediate results of the com-
putation. When we accomplish this, matching in the last step may
effectively work in such cases where the programmer erases the last
character of a variable name being input.

7. Properties of the algorithm
Here we summarize the algorithm and give some statements about
the properties of the algorithm. The algorithm for solving Problem
1 can be summarized as follows.

ALGORITHM 1. Let{(S0, τ ′
0, (Γ , τ0)), . . . , (Si, τ ′

i , (Γ , τi))}
= V(Γ, cmp P) ands be the spelling of the cursor nodes in P .

Then compute the setV of variables as follows.

V =
[

j∈{0,...,i}

n

˘

x |
x ∈ dom(Γ),
s is a prefix of the spelling ofx,
U{((Sj(Γ))(x), Sj(τj))} succeeds

¯

o

We expect Algorithm 1 satisfies the following two properties.

PROPERTY1 (Soundness).The setV of variables obtained by
the algorithm satisfies the condition in Problem 1. That is,∀v ∈
V, ∃M, ∃τ , Γ . M : τ, (P, v) ∈ preM.

PROPERTY2 (Completeness).Any variable that satisfies the con-
dition in Problem 1 is included in the setV of variables obtained
by the algorithm. That is, if∃M, ∃τ , Γ . M : τ, (P, v) ∈ preM ,
thenv ∈ V .

Properties 1 and 2 are our conjectures. As far as we have tried
we have found no counterexample to the above two properties. The
soundness property assures that all the unnecessary candidates are
eliminated with respect to the typing constraint. By having this
property the length of the list of candidates substantially decreases
when there are many candidates without considering typing con-
straint. The completeness property is considered to be rather im-
portant in variable completion since programmers strongly expect
that the variable they are trying to recall should be shown in the
candidates. Having both properties makes the variable completion
system really suitable for practical use.

8. Implementation
Based on our approach we have developed an Emacs mode called
lambda-mode that provides variable name completion for a small
subset of the Standard ML on Emacs. Lambda-mode is available
on our web sitehttp://www.cs.ise.shibaura-it.ac.jp/
lambda-mode/. In this section we describe our implementation
of lambda-mode. The variable name completion consists of the
phases of computing the candidates and interacting with users, for
which we give details in the followings. As for the filtering phase,
it is implemented by following exactly what we have presented in
Section 6.

start := exp (1)
exp := appexp (2)

| fn id => exp (3)
appexp := atexp (4)

| appexp atexp (5)
atexp := id (6)

| const (7)
| (exp) (8)
| let decseqin expend (9)

dec := val valbind (10)
decseq := dec decseq (11)

| ε (12)
valbind := id = exp (13)

| rec id = exp (14)

Figure 5. Concrete syntax for the core language

startP := expP
expP := appexpP

| fn id => expP
appexpP := atexpP

| appexp atexpP
atexp :=

| (expP
| let decseqin expP
| let decseqP

decP := val valbindP
decseqP := dec decseqP

| decP
| ε

valbindP := id = expP
| rec id = expP

Figure 6. Prefix syntax for the core language

8.1 Core language

We have implemented the lambda-mode for the core language
given in Figure 5, which is a subset of Standard ML. An expression
fn x => exp corresponds to a function abstractionλx.M for some
M . A recursive function declarationval rec f = exp corresponds
to a declarationf = fix f.M for someM .

The tokens for the core language are as follows.

let, id, val, rec, in, end, =, =>,
fn, (,), const, ws, EOF

The tokens in type writer font correspond to the string of their own
spellings. The tokenid is for variable names with the spelling as
its attribute,const is for constants with the value as its attribute,
ws is for whitespace, and EOF is for representing the end of the
sequence of tokens input to the parsing phase. More concretely, the
tokenid is for sequences of capital and small alphabets,const is
for sequences of numbers from 0 to 9 that start with numbers from
1 to 9 and for the operators+ and-, andws is for tabs, spaces, and
new line characters. The sequence of numbers have type ofint, the
operators have type ofint → int → int.

8.2 Lexical analysis

The lexer reads all the program text until the character being just
typed. We have implemented it by moving the cursor to the position
immediately before the token being input and restoring the cursor
position after the parsing. We do not move the cursor in the case
the programmer input tabs, spaces, and new line characters. When
the lexer reaches the cursor position, the lexer returns anid token

with the information being in the cursor position and memorizes
the next token to return is EOF. We memorize the spelling of the
token in the middle of typing and use it in the final filtering phase.
In the following we write the token asid .

8.3 Parsing

After lexical analysis, we do parsing to make a partial termP .
In order to parse programs up to the cursor position, we made a
concrete syntax for the prefix programs of the core language. We
give the syntax for the prefix programs in Figure 6. Currently, we
manually make the syntax for the prefix programs from the concrete
syntax for the core language in Figure 5. The parser produces a
prefix termP as a result of parsing. After obtaining a prefix term
P , we proceed with exactly following the method we described in
the previous sections.

We wrote the parser for the prefix programs fully in Emacs Lisp
with the state transition table produced by applying a parser gener-
ator kmyacc [7], which is compatible with yacc, to a description of
the syntax in Figure 6 with actions to construct a prefix termP .

We illustrate the parsing phase by using the following example.

let val ff = fn x => + x 1 in ff (f_

By parsing the above prefix program, we obtain the following prefix
termP .

(let ff = λx.+ x 1 in (ff (∗
f))

∗)∗

There is one thing to note about the syntax of Standard ML.
In Standard ML the right hand side ofval rec declaration must
be a function abstraction by the definition of the language [19].
When parsingval rec declaration, we check whether or not the
right hand side ofval rec declaration is a function abstraction. By
the definition, it is allowed to (meaninglessly) parenthesize the right
hand side of theval rec declaration like the following example.

let val rec f = (((fn x => f x))) in f 2 end

Although the parentheses are ignored in parse trees in general,
we have to take into account the parentheses not yet closed. For
example, let us consider the situation where we are inputting the
argumentx in the above example.

let val rec f = (((fn x => f _

In order to allow this kind of cases, the parser checks the con-
structed prefix term for the right hand side of theval rec declara-
tion to allow arbitrarily many open parentheses before the function
abstraction.

8.4 Type inference

The concrete syntax of the subset is almost same as the core lan-
guageM , except for that let expressions may have one or more dec-
larationsdecseq. There are two alternative approaches to handle let
expressions havingdecseq. One is to convert them into nested let
expressions and use the type inference the algorithmV. The other
is to replace the cases for the let expressions in the algorithmV. We
take the latter approach.

In the former approach, a let expression

let val ff = fn x => + x 1
val yy = 3 in f y_

is transformed into a nested let expression. By parsing and term
completion on the obtained prefix termP , we obtain the following
termD.

(let val ff = λx.+ x 1 in
(let val yy = 3 in

(f (y
∗))∗ end)∗ end)∗

As seen in the above, the term completion introduces a mark node
for each partial let expression in the input partial expressionP .

Generally the complexity of the type inference algorithmV is
exponential with respect to the number of mark nodes. But actually
the mark nodes introduced by the nested let expressions obtained
by the transformation do not increase the complexity exponentially
because the computation corresponding to each of the mark nodes
produces the same tuples as the input ones. Here the computation
for the case ofD∗ once divides the types into their right spines and
then makes the set union operations on them, producing the same
set as the input one.

The former approach has the same approximate complexity as
the latter approach, but the former approach unnecessarily divides
the types and makes the set union operations. In order to avoid the
redundant computation, we take the latter approach. We replace
the cases for let expressions in the algorithmV in Figure 7. We
modified V by replacing the cases for let expressions with the
caseslet x1 = M1, . . . , xn = Mn, xn+1 = D in [] end and
let x1 = M1, . . . , xn = Mn in D end. We convert the completed
concrete syntax trees to a termD with the above modification
before entering the type inference phase.

There is one thing to note about the type inference. Standard
ML has value restriction [24], which we need to take into account
in the future. The core language does not have side effect, so we do
not check value restriction in the current implementation.

8.5 User interaction

We utilize an Emacs mode called auto-complete mode [5] for
interacting with users. The auto-complete mode calls some function
for computing candidates to pop up each time the programmer
types a character. If there are some candidates then the mode
displays them in a pop-up window. In this case the programmer
either select a candidate or proceed on inputting next characters
without selecting any candidate. If there are no candidates then
the mode does nothing. Our implementation of the lambda-mode
utilizes the auto-complete mode with providing a function that is
called every time a character is typed to return the candidates. We
show a screen shot of the lambda-mode in Figure 8, which is taken
when the programmer has just typed the characterx.

Figure 8. A snap shot of the lambda-mode

9. Experimental results
In usual cases the lambda-mode shows the candidates immediately
after the programmer types a character. Since we do not have real
large programs of the core language, we measured the time for
extreme programs automatically generated.

The time is measured from when the programmer typed a key
until when candidates are displayed. The environment in measuring
the time is as follows: CPU is Intel Core i7 920, the size of memory
is 6GB, OS is Windows 7 Home Premium 64bit, and emacs is

V(Γ, D) = case D of
. . .

| let x1 = M1, . . . , xn = Mn, xn+1 = D in [] end ⇒
let (S1, τ1) = W(Γ, M1)

(S2, τ2) = W(S1(Γ){x1 : Cls(S1(Γ), τ1)}, M1)
. . .

(Sn, τn) = W(Sn−1 ◦ · · · ◦ S1(Γ){x1 : Cls(S1(Γ), τ1), . . . ,
xn−1 : Cls(Sn−1 ◦ · · · ◦ S1(Γ), τn−1)}, Mn)

{(Sn+1,0, τn+1,0, C0), . . . , (Sn+1,i, τn+1,i, Ci)} = V(Sn ◦ · · · ◦ S1(Γ), D)
in {(Sn+1,0, α0, C0), . . . , (Sn+1,i, αi, Ci)} (α0, . . . , αi fresh)

| let x1 = M1, . . . , xn = Mn in D end ⇒
let (S1, τ1) = W(Γ, M1)

(S2, τ2) = W(S1(Γ){x1 : Cls(S1(Γ), τ1)}, M1)
. . .

(Sn, τn) = W(Sn−1 ◦ · · · ◦ S1(Γ){x1 : Cls(S1(Γ), τ1), . . . ,
xn−1 : Cls(Sn−1 ◦ · · · ◦ S1(Γ), τn−1)}, Mn)

in V(Sn ◦ · · · ◦ S1(Γ){x1 : Cls(S1(Γ), τ1), . . . ,
xn : Cls(Sn ◦ · · · ◦ S1(Γ), τn)}, D)

Figure 7. The cases for the let expressions having the sequence of the declarations in the modified type inference algorithmV

Meadow (GNU Emacs 22.2.1), although this kind of rather high
spec machine is not necessarily required.

We tested for the extreme cases where let expressions have
various numbers of declarations and some constructs such as let
expressions, function abstractions, and parentheses have various
depth of nesting. We show the case for let expressions with various
numbers of declarations in Table 1, which is typical in functional
languages. We typically write a sequence of many declarations, say
30 declarations, in one let expression.

The time complexity of our algorithm increases exponentially
with respect to the depth of the nesting of let expressions, function
abstractions, and function applications including the cursor node.
The depth of the nesting of function abstractions, function appli-
cations, and let expressions is usually small and it is practically
regarded as constant. Let expressions typically have a sequence of
declarations, in which case the time complexity does not increase
exponentially as mentioned in Section 8. In Table 1 we show the
time for computing candidates for let expressions having 10, 30,
and 50 declarations. In Table 1, the column “Constant” shows the
cases where all declarations have different names in the left hand
side and constant1 in the right hand side. “Various” shows the cases
where all declarations have different names in the left hand side and
various expressions of various types in the right hand side. We have
included the programs used in the experiment in the archive file of
lambda-mode.

One thing to note is that there are many declarations in external
libraries but ordinary type inference can be applied to them in
advance. In the future we are planning to extend our variable name
completion system to deal with external libraries.

Table 1. Comparison of completion time for let expressions with
various numbers of declarations

Time(millisec)
Constant Various

The number of
declarations

10 12 28
30 30 93
50 54 218

10. Related work and discussions
Variable name completion, more generally identifier completion,
has naturally arised from practically used IDEs such as Eclipse.
Currently many IDEs support identifier completion. We begin by
summarising the current status of major IDEs supporting identifier
completion in Section 10.1. We then discuss two aspects of our
work, type inference and term generation, in Section 10.2 and 10.3
respectively, in comparison with several other studies. There is few
academic research directly concerning identifier completion and
actually as far as we know there is just one such work [21], about
which we discuss in Section 10.4. Finally we make a remark about
identifier completion for object oriented languages in Section 10.5.

10.1 Identifier completion in major IDEs

Here we summarize the current status of major IDEs that provide
the functionality of identifier completion. They use various engines
for identifier completion. Some of them simply compute candidates
based on words that have been input in the current file. Some of
them compute candidates based on identifiers that have been de-
fined in some other modules or classes which were already com-
piled. Some of them are more intelligent:Intellisensein Visual
Studio,omni completionin vim, andcontent assist[2] in Eclipse
plugins for various languages. They try to give the candidates that
fit in the context of editing program. For example intellisense and
content assist take into account the scope of the variables. Although
they are becoming more convenient, as far as we know, none of
them filter the candidates by their types in languages with type in-
ference.

In the following we describe individual IDEs with respect to
the intelligenceof engines for completion. First of all, there are
many IDEs with no support for identifier completion. Such IDEs
for functional languages include OCaml Development Tools [9],
which is an Eclipse plugin for OCaml, and Caml mode [1] and
tuareg mode [11], which are Emacs modes for editing Caml and
OCaml code.

Some IDEs use engines that compute the candidates only from
packages. Such IDEs include Java Development Environment for
Emacs (JDEE) [6] which is an Emacs mode for Java, Eclipse FP
[4] which is an Eclipse plugin for Haskell, and Leksah [8] which
is an IDE for Haskell. JDEE complete the member names only in
compiled classes, and Leksah and Eclipse FP complete the function
and type names in packages. These IDEs do not complete names

declared in the current buffer not yet compiled, and hense cannot
complete local variable names without compilation. JDEE partially
takes into account the syntactic context of the cursor position such
as the cases where the cursor is following dot, while Leksah does
not.

More intelligent identifier completion engines are used in Visual
F#, Visual C++, Visual C#, and Eclipse plugins for C++ and Java.
They take into account the syntactic context of the cursor position
to some extent. They show the candidates only when an expression
can appear in the cursor position. They also consider the scope of
variables.

The IDEs listed above which have variable completion function-
ality allow completion of identifiers that do not satisfy the typing
constraint. In contrast, our completion fully utilizes the types when
filtering candidates and excludes the candidates that do not satisfy
the typing constraint.

As for typing information, Caml mode can show the type of
the variable pointed by the cursor and show the location of its
declaration, provided that OCamlSpotter [10], a tool for generating
types and locations of the variables, processes the file including the
declaration of the variable in advance.

10.2 Type inference

There have been some studies concerning type inference for incom-
plete programs, some of which we discuss in the followings.

Haack et al. [14] presented an approach to identifying the set
of program points (aslice) that causes a type error in implicitly
typed languages like Standard ML. They identified the criteria of
completenessand minimality for type error slices and presented
algorithms for finding complete and minimal type error slices. In
this paper we assume that the input programs before the cursor
position do not have any type error. When in the future we allow
programs to have some type errors we might utilize their work to
eliminate variables related to the type error from the candidates.

Lerner et al. [17] presented an approach to producing better
type-error messages for languages with type inference such as
OCaml and C++. They generate well-typed programs from an ill-
typed program by replacing a program fragment that causes the
type error with a “wildcard” expression, which plays the same role
as a dummy node in this paper. As well as the work by Haack et
al. [14], this work might be utilized to cope with programs with
type error by replacing the fragments that cause the type error with
dummy nodes.

10.3 Term generation

There have been some studies concerning term generation, some of
which we discuss in the followings.

Hashimoto [15] constructed an ML-style programming lan-
guage with first-class contexts,i.e., expressions with holes. Holes
correspond to dummy nodes in this paper, but his language has the
operation for filling holes as a language construct while ours does
not.

Some tools have been developed for generating terms under
type constraint. One is Djinn [3], which generates a term having
a given type, and another is to generate a minimum term having a
given type [16]. In these tools a type is given for generating terms
while in our variable name completion system, given a prefix term,
we generate a term having dummy and mark expressions without
being given a type.

Rittri [20] developed a method to search for an identifier in a
program library by using types as search keys, regardingisomor-
phic types under some equivalence relation, considering argument
permutation and the currying-uncurrying, as the same one. Runci-
man et al. [23] independently developed a method for the same
problem by regarding types that are unifiable as the same. They also

tried to handle a case where there is nothing unifiable in the library
but there may be some identifier that yields the desired type by tak-
ing an extra argument. Cosmo studied the problem ofvalid isomor-
phismsin ML-like languages with let polymorphism and provided
a complete and decidable characterization for it [13]. Our problem
is more general than the problems in their work in the sense that
in their problem a type is given as its input to find identifiers hav-
ing its equivalent types while in our problem acontext, i.e., partial
program text up to the cursor position, is given as its input to find
identifiers that fit in the cursor position with some (not yet input)
program text after the cursor position. Under the assumption that
Property 2 holds, our work covers all of these cases in this sense.

10.4 Variable name completion

Here we discuss a study directly concerning variable name comple-
tion. Robbes et al. [21] pointed out that finding the correct candi-
date from the pop-up window can be cumbersome or even slower
than typing the full name when using completion engines like con-
tent assist in Eclipse. In order to solve this problem they limit the
number of the candidates so that the programmer can select a candi-
date quickly. They made some assumptions that programmers are
likely to use methods they have just defined or modified and that
local methods are called more often than the ones in other pack-
ages. Based on these assumptions they developed an algorithm to
compute the candidates by using history of program editing. They
claim that the candidates computed by their algorithm include the
candidate the programmer is looking for with high probability. Our
algorithm computesall the type-correct candidates while their al-
gorithm may not.

10.5 Remark about object oriented languages

Let us remark about completion of identifiers in object oriented
languages. Let us suppose we have typed some identifier for some
object in object oriented languages like C++ and Java. When the
object has some member variables or member functions, the identi-
fier can be followed by a dot and the names. This can be made into
a chain so that we can obtain various types of expressions. Alter-
natively speaking, functional and object oriented languages apply
functions in reverse order: in an object oriented language, we give a
parameter like “this” firstly, and then name the function (method),
where in functional languages it’s the other way around. So in ob-
ject oriented languages filtering by types may not be effectively
applied.

11. Conclusions and future work
In this paper we have presented an approach to completing variable
names for implicitly typed functional languages. We have specified
the variable completion problem in the simplest form and given
a solution to the problem. The key ideas of our approach were
the use of cursor and dummy nodes and insertion of marks. By
using these ideas we have successfully developed basic mechanism
of variable name completion system, based on which we plan to
develop systems for real languages like Haskell, Standard ML,
OCaml, and so on. In order to extend our solution to cover these
languages there are several things to overcome, which we leave as
future work.

• Computation of candidates processes the program text from the
beginning of the text to the cursor position whenever a character
is input, so many redundant computation may be performed. In
real program development, a program is divided in many files
each of which is not so large. What really matters is the time
to process the program in the file currently edited. In particular
we can compute necessary information in advance about the
identifiers declared in libraries. Moreover in the future we may

incrementalize the completion algorithm, which decreases the
time to compute the candidates. There is much work about the
reuse of computation, so we expect they might be used for the
reuse of intermediate results of parsing and type inference. For
example, as for the reuse of type inference, Aditya et. al. [12]
proposed an incremental algorithm for type inference. His work
is to enable type inference to be performed in units of the top-
level declarations.

• When there is an error in the beginning of a program, the vari-
able name completion does not work for the entire program
since we assumed that the program text before the cursor is
given completely without any syntax error or type error. This
assumption is too strict, so we are planning to extend the com-
pletion algorithm to handle the programs having syntax errors
in some way similar to error recovery in parsing. As for the
programs having type errors, we discussed in Section 10.

• In order for our approach to scale up to the level of real lan-
guages, the completion algorithm has to cope with many con-
structs including mutually recursive function declarations, in-
fix operators, pattern matching, modules, and type annotations.
We expect that pattern matching, type annotations, and mod-
ules should be naturally handled. We believe our framework
works well with infix operators by extending the meaning of
marked nodes to include the application of infix operators as
well as usual prefix function applications. Note that infix oper-
ators have to be used syntactically together with the operands,
so we have only to consider the infix operators already declared
before the cursor node, except for those declared after the cur-
sor position, which may be the case in mutually-recursive dec-
larations or in Haskell-like languages. In this case we may have
to explicitly require users that the infix operators should be de-
fined before their use. As for mutually recursive function dec-
larations, we expect the usual type inference works with nat-
ural modifications. To be concrete, when encountering some
unknown identifiers, which may appear in mutually recursive
function declarations, we simply assign a fresh type variable to
the unknown identifiers.

• In Haskell variables can be used before their bindings. In ML
languages variables can be used before their bindings in mu-
tually recursive function definitions. Our framework is not di-
rectly applied to these situations since currently we do not use
the program text after the cursor position according to the prob-
lem specification. In the future we intend to overcome the situ-
ation by enlarging the problem specification.

Acknowledgments
We would like to thank the anonymous referees for many helpful
comments and for pointing out the paper in ASE 2008.

References
[1] Caml mode.http://www.emacswiki.org/emacs/CamlMode.

[2] Content assist. http://help.eclipse.org/help32/index.
jsp?topic=/org.eclipse.platform.doc.isv/guide/
editors contentassist.htm.

[3] Djinn. http://permalink.gmane.org/gmane.comp.lang.
haskell.general/12747.

[4] Eclipse FP.http://eclipsefp.sourceforge.net/.

[5] EmacsWiki: Auto complete. http://www.emacswiki.org/
emacs/AutoComplete.

[6] Java development environment for Emacs. http://jdee.
sourceforge.net/.

[7] KMyacc. http://www005.upp.so-net.ne.jp/kmori/kmyacc/.

[8] Leksah.http://leksah.org/.

[9] OCaml Development Tools.http://ocamldt.free.fr/.

[10] OCamlSpotter. http://jun.furuse.info/hacks/
ocamlspotter/.

[11] Tuareg mode.http://www-rocq.inria.fr/∼acohen/tuareg/
index.html.en.

[12] Shail Aditya and Rishiyur S. Nikhil. Incremental polymorphism. In
Proceedings of the 5th ACM Conference on Functional Programming
Languages and Computer Architecture, pages 379–405, Cambridge,
USA, 1991.

[13] Roberto Di Cosmo. Type isomorphisms in a type-assignment frame-
work. InProceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’92, pages 200–210,
New York, NY, USA, 1992. ACM.

[14] Christian Haack and J. B. Wells. Type error slicing in implicitly typed
higher-order languages.Science of Computer Programming, 50:189–
224, 2004.

[15] Masatomo Hashimoto. First-class contexts in ML. InAsian Comput-
ing Science Conference, volume 1538 ofLecture Notes in Computer
Science, pages 206–223. Springer, 1998.

[16] Susumu Katayama. Systematic search for lambda expressions. In
Trends in Functional Programming, pages 111–126, 2005.

[17] Benjamin Lerner, Matthew Flower, Dan Grossman, and Craig Cham-
bers. Searching for type-error messages. InPLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming Language
Design and Implementation, New York, NY, USA, 2007. ACM Press.

[18] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[19] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The
Definition of Standard ML (Revised). The MIT Press, 1997.

[20] Mikael Rittri. Using types as search keys in function libraries. In
Proceedings of the fourth international conference on Functional pro-
gramming languages and computer architecture, FPCA ’89, pages
174–183, New York, NY, USA, 1989. ACM.

[21] Romain Robbes and Michele Lanza. How program history can im-
prove code completion. InProceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, ASE
’08, pages 317–326, Washington, DC, USA, 2008. IEEE Computer
Society.

[22] John A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[23] Colin Runciman and Ian Toyn. Retrieving re-usable software compo-
nents by polymorphic type. InProceedings of the fourth international
conference on Functional programming languages and computer ar-
chitecture, FPCA ’89, pages 166–173, New York, NY, USA, 1989.
ACM.

[24] Andrew Wright. Simple imperative polymorphism.LISP and Sym-
bolic Computation, 8:343–355, 1995.

