An Approach to Completing Variable Names
for Implicitly Typed Functional Languages

Takumi Goto Isao Sasano

Shibaura Institute of Technology
Tokyo, Japan
{m110057, sasano}@sic.shibaura-it.ac.jp

Abstract cially IDEs for statically typed functional languages are expected

This paper presents an approach to completing variable names© utilize the feature of being statically typed. Reflecting typing in-

when writing programs in implicitly typed functional languages. formation on variable name completion reduces the number of can-

As a first step toward developing practical systems, we consideredd'datesgoi C()anl)ll:;t_zlor;, aﬁ wellas ?%qreajes t)I/BeEerrolés Iz.i”d spelling
a simple case: up to the cursor position the program text is given €/T0S- Actually IDES lor Java, including Java IDE on EClipse, pro-

completely. With this assumption we specify a variable completion Vidé member variable or method name completion, after typing
problem for an implicitly typed core functional language with let- 40t With type information (class definition) reflected. In explicitly
polymorphism and show an algorithm for solving the problem. YPed languages like Java, type information can be directly com-
Based on the algorithm we have implemented a variable name PUt€d from the program text. In implicitly typed languages,

completion system for the language as an Emacs-mode. those which gllow glt.her annotating or not annotating types to vari-
able declarations, it is not so obvious how to design variable com-

Categories and Subject DescriptordD.3.2 [Programming Lan- pletion mechanism with type information reflected, since we need
guagek Language Classifications—Applicative (functional) lan- to do type inference in some way when completing variable names.
guages; D.2.33oftware EngineerifigCoding Tools and Techniques— In developing small programs, purely syntactic variable com-
Program editors pletion may work well without using type information. Our inten-
tion is to complete variable names that are defined in some libraries
or some other program modules. For example, let us consider the
Keywords polymorphic language, type inference, Emacs-mode, Case where a programmer is writing a program fragment that prints
variable name completion somt?I mtzselger value. In Standard ML she might write the fragment
as follows.

1. Introduction print (Int.

Integrated development environments (IDE) play an important role Here let us suppose that she does not recall the function name that
in developing large software. IDEs provide functionalities includ- CONverts an integer to the corresponding string but remembers the
ing automatic indentation, keyword highlighting, variable name Structure nament inside which the function is declared. In this
completion, and so on. Among them one of the most basic and con-Situation there are 29 candidates since the structutehas 29
venient functionalities is variable name completion: when inputting declarations. By using type information, the candidates are reduced
a variable name, candidates for the variable names that start withto two since the functioprint takes a value of string type as its
the string which has been input are shown on a pop-up window argument and the structuiat has only two functions that may
for example. In developing large programs, we tend to use long return a value of string typ&mt andtoString.]
names especially for variables with long scopes for enhancing the In this paper we present a basic mechanism of variable name
program readability, and in such cases variable name completioncompletion for an implicitly typed ML-like core functional lan-
substantially decreases the time for recalling the variable names asguage. In order to filter candidates by type information, we need
well as the amount of keyboard typing or spelling errors. Up to now t0 do type inference for incomplete programs. While various set-
IDEs for commonly-used languages like Java, G+®ave been tings can be considered, we consider a simple case: up to the cur-
well developed while not so much for functional programming lan- SO position, the program text is given completely. More precisely,
guages. Functional languages are now getting to be used widely soVe assume that the input programs before the cursor position do
that IDEs for them are Strong|y expected_ not have any SyntaX error or type error. When COmpUt|ng candi-
IDEs should be designed and implemented reliably as well as dates for variable names to be completed we only use the program

position. This simple approach works well for ML-like languages

since all the variables are declared syntactically before their use in
ML-like languages except for (mutually) recursive declarations. In
the future we may extend the approach to use the program text af-
ter the cursor position for supporting Haskell-like languages where
Copyright© ACM, 2012. This is the author’s version of the work. It is posted here variables may appear syntactlcally before their declarations.
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ACM SIGPLAN 2012 Workshop on Partial Evaluation and * Although our current system does not deal with programs with structures
Program Manipulation (PEPM'12), January 23-24, 2012, Philadelphia, Pennsylvania, (or modules), here we use this example since it is a typical case where
USA, http://doi.acm.org/10.1145/2103746.2103771. filtering with types effectively reduces the number of candidates.

General Terms Reliability, Theory, Languages

If the system might sometimes eliminate valid candidates, it
would be confusing since the programmer would have to consider
whether or not some valid candidates may exist other than the
candidates in the pop-up window. So it is strongly desired for the
variable name completion system to have the property that all the
possible variables are shown as candidates. On the other hand,
variable name completion system is expected to eliminate all the
variables that cause type error for whatever program text is input
after the cursor position. In Section 7 we state as conjectures that
our solution presented in this paper satisfies these two properties.

(const) I'>c: 7 (c: 7 € Cons)
(var) T{z:o}pa:7ifr <o
oMy —1m I'pMy:m

(app) FDMl M2 T2
NHe:m}p>M:m
(@bs) I'bXe.M:m7 — 1
(let) LM :m T{z1: Cls(T, 1)} > M : 12
I'>let 21 = Miin Ms end : 7
) NMe:r}oM: 7
) fx e s

As for the cost of inferring types for partial programs, we con-
struct an efficient partial type inference algorithm while retaining
the above two properties. It is sufficient to do type inference for
each variable that is within its scope at the cursor position, but it

includes many redundant computation. As will be presented in Sec-

tion 5, our partial type inference algorithm appropriately abstracts
types of variables that are within their scope at the cursor position,
which results in an efficient algorithm suitable for practical use.

Based on the mechanism we present, we have implemented

variable name completion as an Emacs mode for the ML-like core
language. Our experiment shows that our mechanism works well
at least for the core language. Currently we apply the algorithm

for computing candidates every time when some character is input
on Emacs. We expect that the algorithm can be incrementalized by

reusing the previous computation, which we leave as future work.

The rest of the paper is organized as follows. Section 2 specifies

the variable completion problem we solve. Section 3 shows our ba-

sic ideas and outline of our solution. Section 4 describes the term

completion phase by introducing two abstractions, dummy nodes

Figure 1. Type system for the core language

pre : M — {(P, z)}

prec = {}

prex = {(-s, z) | sis aprefix of z}

pre (M1 MQ) = {(M1 P2, xz) ‘ (Pz, ZEQ) c preMg}U

{(Pr, z1) | (P, 21) € pre M1}

pre Az.M) = {(Az.P, 1) | (P, x1) € pre M }

pre (let x = M, in M end) =
{(let r = M in PQ, :Eg) | (Pz, 372) € pI’EMQ}U
{(leta:z Pl, £E1) | (]317 Il) € preMl}

pre (fix z.M) = {(fixz.P, 1) | (P, 1) € pre M }

pre ((M)) = {((P, z1) | (P, 1) € pre M}

Figure 2. Functionpre for prefix relation

and marked nodes. Section 5 describes the type inference algo-

rithm. Section 6 describes the phase for filtering by type constraint
and the (partial) spelling of the variable nhame being input at the

cursor position. Section 7 summarizes the algorithm and gives the

properties of our algorithm. Section 8 describes our implementa-

We use a usual ML-style type system with let-polymorphism
given in Figure 1, where we omit the case fav/). As usual we
write I' > M : 7 for a type judgment that a terd/ has a typer
under a type environmeiit A type environment is a mapping from

tion as an Emacs mode for a small subset of Standard ML. SectionVaiables to types. When we add a mapping from a varialitea

9 describes some experimental results. Section 10 discusses abo

related work. Section 11 describes future work and concludes the

paper.

2. Specification of variable completion problem

In this section we specify the problem that we solve in this paper.
We use the following core language on which we specify the prob-
lem.

M

z|c| Az M| MM | (M)
| letz=Min M end | fix z.M

Here z represents a variable,represents a constantz.M rep-
resents a function abstractiohd] M represents a function appli-
cation,let x = M in M end represents a let expression, and
fix x.M represents a fix expression. For simplicity we suppose
constants are and- of typeint — int — int and natural num-
bers of typeint. We have explicitly included the parentheses in the
core language in order to express situations where there are ope
parentheses not yet closed. For simplicity we only consider the pro-
gram without type annotations.

We consider the following types for the core language.

oc:=Vai...an.T Ti=int|a|T—oT

The types consist of the integer typet, type variables, function
types, and polymorphic types. Here we useds a meta variable
for representing a polymorphic type amdas a meta variable for
representing a monomorphic type. When= Va; ... a,.70 and
there exists somey, ..., 7, such that- = [r1 /a1 ... 7n/an]70,
we callT as an instance of the polymorphic typand writer < o.

per to a type environmerit, we writeI['{z : 7}. We can obtain
the type of a variable under a type environmeiitby I'(z). Cls is
a function that takes a type environmé&hand a typer and returns
Vag - am. TWhenFTV (1) \ FTV(T) = {a1,...,an}, where
FTYV takes a type or a type environmerk and returns a set of
free type variables in itConstis a set of types of constants.

As we mentioned in Section 1, we only use the program text
before the cursor position. In order to represent such an incom-
plete program text we introduce the followingefix of the core
language.

P

_[Ae.P|MP| (P
| letz=MinP|letz=P|fixz.P

Here we introduced a cursor node, which corresponds to the
cursor position in the program being written. For simplicity we
only complete variable names and do not complete keywords or
constants, so the cursor nodeorresponds to a variable and does
not correspond to constants or any other constructs. Each of the
&refix terms defined above ends with the cursor nodehe cursor

ode. has as its attribute the (partial) spelling of a variable now
being input. The spelling may be an empty spelling, which we write
e. We may write the spelling as the subscript of the cursor node like
~¢ and.. when necessary.

Here we formally specify the prefix relation betweBrand M,

with the variable name being input at the cursor position, by the
function pre in Figure 2. The functiorpre takes a termM and
returns all the prefix terms a¥/, each of which is paired with a
variable name being focused on. Note tpad returns the empty
set for the case of constansince we do not complete constants.
Note also that we do not complete the identifiers bound at function
abstractions or declarations, which is reflected in the definition

of pre. We show an example fqure. By applyingpre to a term the term. Then we do type inference for each of the terms. In type
(Aabc. abc) 1, we obtain the following set. inference we assign a fresh type variable for the cursor node and
{((\abe. ., abc), ((Aabc. a, abc), fresh type variables for dummy nodes. For c_aach term for Wh_ich_ type.
((Aabc. _ap, abc), ((AabC. —anc, abc)} inference succeed_s, we enumerate the variables that are within their
scope and then unify each of them with the type of the cursor node.
The constant is not included in this result singere returns an We filter all variables for which the unification succeeds, and obtain

empty set in the case of constant. those variables whose prefixes match the characters currently being
Now we are ready to specify the problem. typed.
PROBLEM 1 (Variable completion)Given a prefix termP and a ~ Here we illustrate the naive solution by using the following
type environmenT, find a setV of variables such thavv € simple termp.
V,3IM, Ir,T'> M : 1, (P, v) € pre M. let £f = Ax.+x 1in £f (_¢
The setl” of variables are the candidates to be popped up. Most Firstly we generate the terms each of which has the above term as
desirable answer to the problem is taggestset V" of variables. its prefix, using dummy nodes. The above term with completing a

Actually our algorithm for solving the problem presented in this ¢josing parenthesis is one of the generated terms. In type checking
paper gives the largest one. Note that in practical situations e assign some fresh type variabldor the cursor node:. As a

includes types of variables declared in libraries. _ result we obtaine = 4nt. In this casetf is the only variable that
Lgt us see a smplg example, where the following prefix term s within its scope. Sincéf has type ofint — int, there is no
(partial program)P is given. candidate in this case.
let xx = 1 in let xy = Ax.\y.x y in let xz = \x.x in xy . There is another possible term, which is the above term with

) .) £f (_¢ replaced bytf (_: []). Here[] indicates a dummy node,
The above term correspond.s.to the situation where we are typing ayhich represents an arbitrary term that can be an argument of
charactek at the cursor position. Suppose the type environmient e function application. In type checking we assign fresh type
is). Then candidates to be popped up have to be within their scope,ygriablesa and for _; and[] respectively, and obtain = 3 —
so they must be some of the variabfes xy, andxz. Among these int. In this case the type aff matches against the type of, so
variables xy andxz satisfy the condition whilecx does not. SO ¢+ remains to be a candidate, which finally becomes a candidate to
the largest set i§$xy, xz}. To be concrete, the types of these three po popped up by checkirgf hast as its prefix.
variables arent, Vof. (a —) — a — f3, andvVa. a — a, There are many other possible terms by adding function applica-
respectively. The cursor nodg is immediately after the varla_ble tions. One of such examples is the above term wtt{. : replaced
xy, SO every candidate becomes the argument of the funggion by ££ (_¢ [] []). In this case the type of the cursor node becomes

By typing constraint the variablex is excluded. _ _ a — B — int, which does not match with the type of .
.He.re let us see another example, where the following prefixterm — There are actually infinitely many possible terms even by using
P is given. dummy nodes since the programmer can write infinitely many
fix xf dxx.+ (xf (-xx1)) (xf ., expressions as arguments of function applications after the cursor

. L . . position. So we used some threshold with respect to the depth of the
This termP corresponds to the situation where we are in the middle iorms and thus we may not necessarily obtain all the candidates.
of writing the definition of a recursive function. We suppose again We actually have implemented a system based on this naive
the type environmentk is (). There are two variablext andxx, solution, but it took much time (e.g., 100 seconds) in some cases
which are in the scope at the cursor position. The typesfaind and does not even necessarily generate all the candidates. So we

xx areint — int andint respectively. In this case the type of the 4nsjdered how to overcome these two points. We show the outline
candidates must bieat since the functioxf takes as its argument ¢ ine solution we have reached in Section 3.2.

an expressiorf- xx 1) of typeint. So the largest set isx}.
3.2 Our solution

3. Basicideas By introducing another notion aharked nodewhich represents
Here we show basic ideas for solving the variable completion prob- conceptually zero or more function applications with dummy nodes
lem. Following the problem specification, if we could generate all given as its arguments, we developed a solution that generates all
the terms of\/ having P as their prefix, then by type inference we the candidates without generating infinitely many terms. In the
could solve the problem. But obviously there are infinitely many following, we illustrate our solution by the example above.

terms M. In order to reduce the number of terms generated, we Since any expression can take an argument syntactically, the
introduce the notion oflummy nodeWe then give a naive pre- preliminary solution complemented a dummy node for each sub-
liminary solution based on this notion, which may take much time term. As a result there appeared a sequence of function applications
and does not necessarily produce all the candidates. By introducingwith dummy nodes. Our idea is that this sequence can be abstracted
another notion ofmarked nodewe reached our current solution, by marking such nodes. For the above example our new algorithm
which produces all the candidates in time short enough to be usedconstructs the following term by marking the nodes that can take
practically (see Section 9 for results of measuring time for comple- an argument syntactically.

tion). (let ££ — Ax.+ x 1 in (££ (o:*))" end)"
3.1 Apreliminary solution Nodes with asterisk are marked nodes. For examplg* repre-
Here we introduce the notion efummy nodeln other words, we sents_¢, =t [}, =£ [] [], =¢ [] [] [], @and so on, andff (_:"))"

generate terms ol that additionally have as its constructs the representsf _¢, £f (¢ []), £f ¢ [], £f (=t []) [], and so on.
dummy node and cursor node. A dummy node is a placeholder for The type of the variabléf is int — int, which is not influenced
an arbitrary term. If we could generate all the terms using dummy by whatever the nodes with the asteristepresent. Since the vari-
nodes, we could solve the problem. But even by using dummy ableff is the only variable that is within the scope at the cursor
nodes there are still infinitely many terms to generate. So we had to position, the possible types aof* should be the possible types of
use some threshold with respect to some criteria, e.g. the depth offf£*. Since the type off is int — int, possible terms represented

cmp @ P — D

cmp - =

cmp (Az.P) = Az.(cmp P)*

cmp (M P) = (M (cmps P))*

cmp (letx=MinP) = (letxz= M incmp P end)”*
cmp (let x = P) = (letz=cmpPin[]end)”
cmp (fix z.P) = fixz.(emp P)*

cmp ((P) = (cmp P)’

cmps P — D

cmps -

cmps (let z = M in P)
cmps (let z = P)
cmps ((P)

(let x = M in cmp P end)
(let x = cmp P in [] end)
cmp P

Figure 3. Term completion functiommp

by ££* are eitherff or ££ [] in order for the term to be well typed.
The type of_:™ must beint since_:" is in the argument position
of the variablef£. So.:* can only take the form off []. The type
of (££ (_¢"))* must beint since the type off (_:") isint. As a
result,ff becomes the candidate in this example.

Based on this idea we develop an algorithm for the variable
completion in the following sections. The algorithm generates all

the candidates and runs substantially faster than the preliminary

naive solution.

4. Term completion with dummy nodes and
marked nodes

As the first phase of the algorithm, we generate terms that have as

their prefix the given partial tern¥ by using dummy nodes and
marked nodes. We call this generation phaséea® completion

We define terms that include dummy nodes and marked nodes a
follows.

D

2| D*|Az.D| M D |let z=Din|[] end
|let x = M in D end | fix .D

We omit the parentheses here since term®ddire already com-
pleted by dummy nodées.

We define a term completion functiannp from P to D in
Figure 3. Although we are manipulating abstract syntax we would
like to treat it in a way consistent with the concrete syntax. So we
introduce the functiommp- to exclude the outer most mark in the

The algorithmV takes a pair of a tern and a type environment
T" and returns a set of tuples of a substitution, a type, and a pair of
type environment and type of the cursor position. A substitution is a
function from type variables to types. A substitution may be applied
to types or type environments by natural extension. We(liss a
meta variable for representing a pair of type environment and type
of the cursor position and as a meta variable for representing a
substitution.

Our algorithm uses Milner'3$V as a subroutine in the cases of
function application\/ D and let expressioket x = M in D end.
The algorithm)V takes a type environmeiitand a termM as its
arguments and returns a substituti®and a typer. When)V suc-
ceeds the judgmeri(T") > M : 7 holds. We omit the definition of
W. The algorithm)’ uses the unification algorithé [22] in the
case of function application and fix expression, as is also the case
for W. The algorithii/ takes a set of pairs of type expressions and
returns one of the most general unifiers when they are unifiable and
fails when they are not.

V is different from)V in the following points.

¢ The terms given as the argument include the mark, dummy, and
cursor node.

e The algorithmV returns a pair of a substitution and a type
while the algorithmV’ returns a set of tuples of a substitution, a
type, and a pair of the type environment at the cursor position
and a type of the cursor position.

e We have not written explicitly in the algorithiw the cases
where some unification fails, as is usual in the description of
the algorithmW. Unlike W, when some unification fails, the
entire algorithm)’ does not fail but just eliminates the case
when taking union of the results.

gA term D that includes marked nodes, dummy nodes, or a cursor

node conceptually represents multiple termsMf The type in-
ference algorithnV instantiates each occurrence of the three con-
structs in an appropriate way to cover all the cases, sathaturns
multiple results. The cursor nodeconceptually represents all the
variables that are within their scope with the types constrained by
the contexts. So for the case of the cursor ngdé enumerates all

the variables in the domain ot As forarity andg, we explain later.

A marked nodeD* conceptually represents zero or more function
applications with dummy nodes given as its arguments. So for the
case ofD*, V computes all the types taken from ttight spineof

argument part of the function applications, since otherwise function the types ofD, that is,at(7) wherer is a type ofD. The dummy
applications would become right associative, which violates the node[] conceptually represents all the terms and can thus have any
convention of lambda notations. Note thatp, does not take type depending on the context, so fresh type variables are generated
Az.P or M P since such cases do not occur according to the for the dummy node in the caseleft « = D in [] end.
convention in describing lambda terms. Also note that the result of In order to reduce the number of elements in the result of type
emp (Az.P) is not(Az.(emp P))* since an expression input after inference, the algorithriv abstracts their types, — -+ — 7y,
P becomes part of the body of the lambda abstraction according to Where is int or a type variable, intey — --- — ax where
the convention in describing lambda terms. ai,...,q are fresh type variables. This is done by the functions
We illustrate the functiormp by using an example. Suppose arity andg. The functiorarity takes a type and counts the number
the following termP is given. of arguments, oarity, in 7. For examplearity (int — int — int)
results in 2. The functiop takesn as its argument and generates a
type that consists of. + 1 fresh type variables connected by the
arrows. For exampleg(2) results in a typexo — a1 — ag,
whereag, a1, andas are distinct fresh type variables. Using the
functionsarity andg the algorithm)’ groups types of variables that
are within their scope at the cursor position into equivalence classes
. with respect to the arity. This makes computations about functions
5. Type inference that have the same arity be performed at once. Since in typical cases
In this phase we do type inference to obtain types of the variables functions take a few arguments, this abstraction effectively works
and the cursor node. Our type inference algorithindefined in for reducing redundant computations. The precise computation is
Figure 4, is based on Milner’s type inference algorithbh [18]. delayed until the filtering phase in Section 6.

let xa = Ax.x2inlet yy = Ax.xinlet xc = 3inxa (.
By applyingemp to this, we obtain the following terny.

(let xa = Ax.x 2in (let yy = Ax.x in
(let xc = 3in (xa (ox"))" end)” end)” end)”

V(T', D) = case D of
= let T = {g(arity(T'(z))) | = € dom(T)} in {(0,
| D* = {(S, 7,C)| (S, 7, C) e V(T, D), t
| Ax.D = let {(So, 70, C()), ey (SZ, Ti, Cl)

} =

7, (T, 7)) | 7€T}

at(r)}
V(I {z: a}, D)

(« fresh)

in {(So, So(a) — T0, Co),...,(si, SZ(O() — Ti, Cl)}

| M D = let (S5, 1) = W(T, M)

{(S2,0, 72,0, C2,0),...,(S2,, T2,i, C2,)} = V(S1('), D)
Sz, = U{(S2,;(m1), 72,5 —)} (o fresh) (j € {0,...,i})

in {(93,; 0 S2,5 051, S3,5(), Ca,5) | 5 € {0,

|let z = D in [] end = let {(So, 70, Co),..
in

|let x = M in D end = let (S1, 71) = W(T, M)

. a(S’i7 Tiy

{(507 Qo, Oo),...,(si, (673 Cl)}

i
Ci)} =V(, D)

(a0, ..., q; fresh)

{(Szyo, 72,0, 02,0)7 ey (52,1‘7 T2,y 02,1')} = V(Sl(P){m : ClS(Sl(F)7 7'1)}, D)

in {(Sz2,5 081, 725, C2,5) | j €{0,...,i}}
| fix 2.D = let {(S1,0, 70, Co),...,(S1,i, T, Ci)} =V {z: a}, D) («fresh)
{520,924} =U(7;, S1,5()) (5 €10,...,1})
in {(S2,5 0515, 75,C5) | 7 €{0,...,i}}
arity(Vas ...ap.7) = arity(r) ZEE; T) = }Qf T2} U ai(m2)
ar!ty(rl — T2) = arity(me) +1 at(int) = {int}
g::ggfgt) ; 8 gln+1) = a—g(n) (afresh)
g(0) = a (afresh)

Figure 4. Type inference algorithry

The second element of the result for the cas®bfis the set of
all types that are taken from the right spine of the typéofThis
reflects the situation where the productidh := M; M- could
be applied arbitrarily many times in the term completion phase
without using the notion of marking.

In the algorithm)’ we do not apply substitution to the environ-
ments and types of the cursor position while traversing the term,
but apply it to the result of the algorithm. The environments and
types at the cursor position are obtained as follows: in each tuple
(S, 7, (T_,7.)) inthe results oM (T", D), apply the substitutioy
toI'_ andr., respectively.

Let us see an example. L&t be the result of term completion
in Section 4. In the following we show the process of computing
V(0, D). The type environment given 86 can be empty since the
term D does not have free variables. Whemencounters the cursor
expression. ¢, the type environmerit . for the cursor position has
been obtained as follows.

T =

{xa:Va.(int —» a) — «, yy : Va.a — a, xc :int}

The algorithmV returns the following set of two tuples when it
encounters the cursor expression

{(@, B1 — B2, (T_, B1 — B2)), (0, B3, (T, B3))}

By taking all the types from the right spine of each of the above two
types1 — (2 andgs, V returns the following set of three tuples
for o*.

{(Q)a Bl - ﬁQa (Fmﬁl - ﬂ?))a (07 527 (F»_nﬁl - /82))7
(0, Bs,(I'_, Bs))}

Next, whenV processesa (_x") the following unifications are
tried:

Sy = U{(int — o) — ao, (b1 — B2) — 7))}
So =U{(int — a1) — a1, P2 — 72)}
Sz = U{(int — a2) — a2, Bz — ¥3)}

where the typegint — «;) — «; (1 = 0,1,2) are instantiated
types of the functioxa. These instantiations are done in the func-
tion W. All the unifications succeed and returns the following

set of three tuples fata (_x).

{(Slv Qo, (Fm 51 - ﬁQ))a (SQ, an, (Fmﬁl - 52))7
(S3?O‘2? (FmBS))}

Eventually these three tuples become the resul8(@ D). As

a final step, we apply,, S2 andSs to 81 — 32, 81 — (B2 and

(Bs and obtain typesnt — «o, /1 — int — a1, andint — as
respectively, for the cursor. Similarly by applyisg, S2 andSs to

T'_. we obtainI"_ as the type environment for the cursor position.
Note that all the first elements of the third elements in the tuples
of the result of the algorithriy are the same. We show filtering for
this example in the next section.

6. Filtering candidates

In this phase we make the candidates to be shown in pop-up win-
dow. The initial candidates are taken from the variables in the do-
main of the type environmerit_ obtained in the type inference
phase. They are filtered by unifying their types with the types of
the cursor. Variables that failed to unify with any of the types of the
cursor are deleted from candidates. When a candidate has a type of
7, we unify 7 with each of the types of the cursor. When a candi-
date has a polymorphic type @ty ... ax.7, we unify the type of
[Bi/c1] ... [Bk/ak]T (B, .., Bk fresh) with each of the types of
the cursor. Note that all of the types of the cursor are monomor-
phic. We finally filter the candidates by matching the spellings of
the candidates with the (partial) spelling of the variable name being
input.

We show an example for filtering candidates by using the result
of type inference in Section 5. Candidates must have a type that is
unifiable withint — «ag, 61 — int — ai, Oorint — as. There
are thus the following nine combinations.

M{(;nt — ao, (int — as) — as)}, (forxa)

U{(int — ao, ag — as)}, (foryy)

U{(int — o, int)}, (‘for xc)

u{(p — (mt — 1), (int — as) — as)}, (for xa)
U{(B1 — (int — ar), a6 — as)}, (foryy)

U{(Br — (int — o), int)}, (for xc)

U{(int — as, (int — as) — as)}, (for xa)
U{(int — a2, as — as)}, (foryy)

U{(int — az, int)} (for xc)

The second, the fourth, the fifth and the eighth unifications suc-
ceed. As a result we get two candidatesandyy. Among these
candidates the variablea matches with the (partial) spellingof

the variable name currently being input whijlg does not. So we
obtain the singleton sdka} as the final candidate set.

There is another alternative about when filtering the candidates
with the spelling of the variable name being input: to filter them
in the first step. In the future we may incrementalize the variable
completion system by caching the intermediate results of the com-
putation. When we accomplish this, matching in the last step may

effectively work in such cases where the programmer erases the last

character of a variable name being input.

7. Properties of the algorithm

Here we summarize the algorithm and give some statements about

the properties of the algorithm. The algorithm for solving Problem
1 can be summarized as follows.

ALGORITHM 1. Let{(So, 10, (T, 70));s- .-, (Si, 7, (T, 7))}
= Y(T', cmp P) ands be the spelling of the cursor nodg in P.
Then compute the s&t of variables as follows.

b

We expect Algorithm 1 satisfies the following two properties.

z € dom(T.),
{z | sis a prefix of the spelling aof,
i} UL((S;(TL) (), Sj(75))} succeeds

.....

PROPERTY1 (Soundness)The setV of variables obtained by
the algorithm satisfies the condition in Problem 1. Thatvis, €
V,3M, 3r,T'> M : 7, (P, v) € pre M.

PROPERTY2 (Completeness)iny variable that satisfies the con-
dition in Problem 1 is included in the sé&t of variables obtained
by the algorithm. Thatis, @M, 37,T'> M : 7, (P, v) € pre M,
thenv € V.

start = exp (1)
exp = appexp (2)
| fnid=>exp (3)
appexp := atexp (4)
| appexp atexp (5)
atexp = id (6)
| const (7)
| (exp (8)
| let decsedin expend (9)
dec := val valbind (10)
decseq := decdecseq (11)
I (12)
valbind := id=exp (13)
| recid=exp (14)

Figure 5. Concrete syntax for the core language

startP = expP
expP := appexpP

| £fnid=>expP
appexpP := atexpP

| appexp atexpP
atexp = .

| (expP

| 1let decsedin expP

| let decsegP
decP := val valbindP
decsegP := dec decseqP

| decP

| e
valbindP := id=expP

| recid=expP

Figure 6. Prefix syntax for the core language

8.1 Core language

We have implemented the lambda-mode for the core language
given in Figure 5, which is a subset of Standard ML. An expression
fn x => exp corresponds to a function abstractivg. M for some

Properties 1 and 2 are our conjectures. As far as we have tried y7, A recursive function declarational rec f = exp corresponds
we have found no counterexample to the above two properties. Theto a declaratiory = fix f.M for someM.

soundness property assures that all the unnecessary candidates are The tokens for the core language are as follows.

eliminated with respect to the typing constraint. By having this

property the length of the list of candidates substantially decreases

when there are many candidates without considering typing con-

straint. The completeness property is considered to be rather im-

portant in variable completion since programmers strongly expect
that the variable they are trying to recall should be shown in the

let, id, val, rec, in, end, =, =>,

fn, (,), const, ws, EOF

The tokens in type writer font correspond to the string of their own
spellings. The tokend is for variable names with the spelling as
its attribute,const is for constants with the value as its attribute,

candidates. Having both properties makes the variable completionws is for whitespace, and EOF is for representing the end of the

system really suitable for practical use.

8. Implementation

sequence of tokens input to the parsing phase. More concretely, the
tokenid is for sequences of capital and small alphabeigst is

for sequences of numbers from 0 to 9 that start with numbers from
1 to 9 and for the operatorsand-, andwsis for tabs, spaces, and

Based on our approach we have developed an Emacs mode callediew line characters. The sequence of numbers have tyjpe dhe

lambda-mode that provides variable name completion for a small

subset of the Standard ML on Emacs. Lambda-mode is available

on our web sitehttp://www.cs.ise.shibaura-it.ac.jp/
lambda-mode/. In this section we describe our implementation
of lambda-mode. The variable hame completion consists of the

operators have type oht — int — int.

8.2 Lexical analysis

The lexer reads all the program text until the character being just
typed. We have implemented it by moving the cursor to the position

phases of computing the candidates and interacting with users, forimmediately before the token being input and restoring the cursor

which we give details in the followings. As for the filtering phase,
it is implemented by following exactly what we have presented in
Section 6.

position after the parsing. We do not move the cursor in the case
the programmer input tabs, spaces, and new line characters. When
the lexer reaches the cursor position, the lexer returng &oken

with the information being in the cursor position and memorizes Generally the complexity of the type inference algorithmis
the next token to return is EOF. We memorize the spelling of the exponential with respect to the number of mark nodes. But actually
token in the middle of typing and use it in the final filtering phase. the mark nodes introduced by the nested let expressions obtained

In the following we write the token asl_. by the transformation do not increase the complexity exponentially
. because the computation corresponding to each of the mark nodes
8.3 Parsing produces the same tuples as the input ones. Here the computation

After lexical analysis, we do parsing to make a partial tefm for the case oD* once divides the types into their right spines and
In order to parse programs up to the cursor position, we made athen makes the set union operations on them, producing the same
concrete syntax for the prefix programs of the core language. We set as the input one.

give the syntax for the prefix programs in Figure 6. Currently, we The former approach has the same approximate complexity as
manually make the syntax for the prefix programs from the concrete the latter approach, but the former approach unnecessarily divides
syntax for the core language in Figure 5. The parser produces athe types and makes the set union operations. In order to avoid the
prefix term P as a result of parsing. After obtaining a prefix term redundant computation, we take the latter approach. We replace
P, we proceed with exactly following the method we described in the cases for let expressions in the algorithnin Figure 7. We

the previous sections. modified V by replacing the cases for let expressions with the

We wrote the parser for the prefix programs fully in Emacs Lisp casedet z; = Mi,..., £n = My, 2n+1 = D in [] end and
with the state transition table produced by applying a parser gener-let x1 = M, ..., , = M, in D end. We convert the completed
ator kmyacc [7], which is compatible with yacc, to a description of concrete syntax trees to a terf with the above modification
the syntax in Figure 6 with actions to construct a prefix té&tm before entering the type inference phase.

We illustrate the parsing phase by using the following example. There is one thing to note about the type inference. Standard
ML has value restriction [24], which we need to take into account
in the future. The core language does not have side effect, so we do
By parsing the above prefix program, we obtain the following prefix not check value restriction in the current implementation.
term P.

let val ff = fn x => + x 1 in ff (f_

(let ££ = Ax.+x 1in (££ (L))" 8.5 User interaction

There is one thing to note about the syntax of Standard ML. We utilize an Emacs mode called auto-complete mode [5] for
In Standard ML the right hand side efl rec declaration must interacting with users. The auto-complete mode calls some function
be a function abstraction by the definition of the language [19]. for computing candidates to pop up each time the programmer
When parsingval rec declaration, we check whether or not the types a character. If there are some candidates then the mode
right hand side ofal rec declaration is a function abstraction. By ~ displays them in a pop-up window. In this case the programmer
the definition, it is allowed to (meaninglessly) parenthesize the right €ither select a candidate or proceed on inputting next characters

hand side of theval rec declaration like the following example. without selecting any candidate. If there are no candidates then
) the mode does nothing. Our implementation of the lambda-mode
let val rec £ = (((fn x => £ x))) in f 2 end utilizes the auto-complete mode with providing a function that is

Although the parentheses are ignored in parse trees in generalCalled every time a character is typed to return the candidates. We
we have to take into account the parentheses not yet closed. Forshow a screen shot of the lambda-mode in Figure 8, which is taken
example, let us consider the situation where we are inputting the when the programmer has just typed the character

argument in the above example.

let val rec f = (((fn x => £ %4 Meadow.exe@SASANO-PC B
)) - File Edit Options Buffers Tools Help
In order to qllow this kind pf cases, the parser checks the con- let val xa = fn x => x 2
structed prefix term for the right hand side of thel rec declara- val yy = fn x = x
tion to allow arbitrarily many open parentheses before the function val Xc = 3

abstraction. in xa (XE
8.4 Type inference

The concrete syntax of the subset is almost same as the core lan-
guageM , except for that let expressions may have one or more dec-
larationsdecseq. There are two alternative approaches to handle let _S¥xx xscratch* All L4
expressions havindecseq. One is to convert them into nested let
expressions and use the type inference the algorithifhe other
is to replace the cases for the let expressions in the algobithive
take the latter approach. Figure 8. A snap shot of the lambda-mode
In the former approach, a let expression

let val ff = fn x => + x 1
val yy = 3 in f y_ 9. Experimental results

is transformed into a nested let expression. By parsing and termn usual cases the lambda-mode shows the candidates immediately
completion on the obtained prefix terR) we obtain the following after the programmer types a character. Since we do not have real

termD. large programs of the core language, we measured the time for
(let val ff = Ax.+x1in extreme programs automatically generated.

(let val yy = 31in The time is measured from when the programmer typed a key

(f ("))" end)” end)” until when candidates are displayed. The environment in measuring

As seen in the above, the term completion introduces a mark nodethe time is as follows: CPU is Intel Core i7 920, the size of memory
for each partial let expression in the input partial expresgion is 6GB, OS is Windows 7 Home Premium 64bit, and emacs is

V(T', D) = case D of

|ié1;m1:M1, ciey Zn =Mn, Tnt1 =D in[] end =
let (Sl, 7'1) = W(F, M1)
(82, 72) = W(S1(I'){z1 : Cls(S1(T'), m1)}, My)

(S'ru Tn) = W(Snfl O---0 S1(F){x1 : ClS(Sl(F),Tl), ceuy
Tn—1 : ClS(Sn—l O---0 SI(F)7 Tn—l)}7 Mn)
{(Sn+1,0, Tn+1,0, Co), .-, (Sn+1,iy Tnt1,i, Ci)} = V(Sno---08:1(I'), D)
in {(Sn+1$0, Qp, Co), ey (Srz+l,i7 (673 Cl)} (()lo7 e 73 fresh)
|let 1 = M, ..., zn = M, in D end =
let (51, 7'1) = W(F, M1)
(S2, 72) = W(SL(T) s : CLs(S1(T),)}, Mo)

(Sn, Tn) = W(Snfl O---0 Sl(r){l'l : ClS(Sl(F),Tl), RN
Tn—-1: Ol8(5n71 O---0 Sl(F),rn,l)}, Mn)
in V(Spo---081(I){x1 : Cls(S1(T), 71),...,
Zpn 1 Ols(Sp0---051(T), 7))}, D)

Figure 7. The cases for the let expressions having the sequence of the declarations in the modified type inference Blgorithm

Meadow (GNU Emacs 22.2.1), although this kind of rather high 10. Related work and discussions
spec machine is not necessarily required.

We tested for the extreme cases where let expressions hav
various numbers of declarations and some constructs such as le
expressions, function abstractions, and parentheses have variou§

depth of nesting. We show the case for let expressions with varlousc()mp'etion in Section 10.1. We then discuss two aspects of our

numbers of declarations in Table 1, which is typical in functional oy tyne inference and term generation, in Section 10.2 and 10.3
languages. We typically write a sequence of many declarations, sayyegpectively, in comparison with several other studies. There is few
30 declarations, in one let expression. i academic research directly concerning identifier completion and

The time complexity of our algorithm increases exponentially actually as far as we know there is just one such work [21], about
with respect to the depth of the nesting of let expressions, function which we discuss in Section 10.4. Finally we make a remarl’< about

abstractions, and function applications including the cursor node. ; s : : : : :
’ . .] . .~ identifier completion for t oriented lan in tion 10.5.
The depth of the nesting of function abstractions, function appli- dentifier completion for object oriented languages in Section 10.5

cations, and let expressions is usually small and it is practically

regarded as constant. Let expressions typically have a sequence ot0.1 Identifier completion in major IDEs

declarations, in which case the time complexity does not increase Here we summarize the current status of major IDEs that provide
exponentially as mentioned in Section 8. In Table 1 we show the ne functionality of identifier completion. They use various engines
time for computing candidates for let expressions having 10, 30, for identifier completion. Some of them simply compute candidates
and 50 declarations. In Table 1, the column “Constant” shows the pased on words that have been input in the current file. Some of
cases where all declarations have different names in the left handinem compute candidates based on identifiers that have been de-
side and constaritin the right hand side. “Various” shows the cases fined in some other modules or classes which were already com-
lambda-mode.) o fit in the context of editing program. For example intellisense and

_ One thing to note is that there are many declarations in external content assist take into account the scope of the variables. Although
libraries but ordinary type |nferenqe can be applied to them in they are becoming more convenient, as far as we know, none of
advance. In the future we are planning to extend our variable nametnem filter the candidates by their types in languages with type in-
completion system to deal with external libraries. ference.

In the following we describe individual IDEs with respect to
the intelligenceof engines for completion. First of all, there are
many IDEs with no support for identifier completion. Such IDEs
for functional languages include OCaml Development Tools [9],
which is an Eclipse plugin for OCaml, and Caml mode [1] and

Variable name completion, more generally identifier completion,
as naturally arised from practically used IDEs such as Eclipse.
urrently many IDEs support identifier completion. We begin by
ummarising the current status of major IDEs supporting identifier

Table 1. Comparison of completion time for let expressions with
various numbers of declarations

Time(millisec) tuareg mode [11], which are Emacs modes for editing Caml and
Constant] Various OCaml code. _ .
10 12 28 Some IDEs use engines that compute the candidates only from
The “”".‘ber L 30 30 93 packages. Such IDEs include Java Development Environment for
declarations 50 54 218 Emacs (JDEE) [6] which is an Emacs mode for Java, Eclipse FP

[4] which is an Eclipse plugin for Haskell, and Leksah [8] which

is an IDE for Haskell. JIDEE complete the member names only in
compiled classes, and Leksah and Eclipse FP complete the function
and type names in packages. These IDEs do not complete names

declared in the current buffer not yet compiled, and hense cannottried to handle a case where there is nothing unifiable in the library
complete local variable names without compilation. JDEE partially but there may be some identifier that yields the desired type by tak-
takes into account the syntactic context of the cursor position suching an extra argument. Cosmo studied the probleraéifl isomor-

as the cases where the cursor is following dot, while Leksah does phismsin ML-like languages with let polymorphism and provided

not. a complete and decidable characterization for it [13]. Our problem
More intelligent identifier completion engines are used in Visual is more general than the problems in their work in the sense that
F#, Visual G+, Visual C#, and Eclipse plugins for+ and Java. in their problem a type is given as its input to find identifiers hav-

They take into account the syntactic context of the cursor position ing its equivalent types while in our problentantexti.e., partial

to some extent. They show the candidates only when an expressiomprogram text up to the cursor position, is given as its input to find

can appear in the cursor position. They also consider the scope ofidentifiers that fit in the cursor position with some (not yet input)

variables. program text after the cursor position. Under the assumption that
The IDEs listed above which have variable completion function- Property 2 holds, our work covers all of these cases in this sense.

ality allow completion of identifiers that do not satisfy the typing .)

constraint. In contrast, our completion fully utilizes the types when 10.4 Variable name completion

filtering candidates and excludes the candidates that do not satisfyHere we discuss a study directly concerning variable name comple-

the typing constraint. tion. Robbes et al. [21] pointed out that finding the correct candi-
As for typing information, Caml mode can show the type of date from the pop-up window can be cumbersome or even slower

the variable pointed by the cursor and show the location of its than typing the full name when using completion engines like con-

declaration, provided that OCamliSpotter [10], a tool for generating tent assist in Eclipse. In order to solve this problem they limit the

types and locations of the variables, processes the file including thenumber of the candidates so that the programmer can select a candi-

declaration of the variable in advance. date quickly. They made some assumptions that programmers are
) likely to use methods they have just defined or modified and that
10.2 Type inference local methods are called more often than the ones in other pack-
There have been some studies concerning type inference for incom-2ges. Based on these assumptions they developed an algorithm to
plete programs, some of which we discuss in the followings. compute the candidates by using history of program editing. They

Haack et al. [14] presented an approach to identifying the set claim that the candidates computed by their algorithm include the
of program points (alice) that causes a type error in implicity ~ candidate the programmer is looking for with high probability. Our
typed languages like Standard ML. They identified the criteria of algorithm computesll the type-correct candidates while their al-
completenessand minimality for type error slices and presented ~ gorithm may not.
algorithms for finding complete and minimal type error slices. In
this paper we assume that the input programs before the cursor
position do not have any type error. When in the future we allow Let us remark about completion of identifiers in object oriented
programs to have some type errors we might utilize their work to languages. Let us suppose we have typed some identifier for some
eliminate variables related to the type error from the candidates. object in object oriented languages like+and Java. When the

Lerner et al. [17] presented an approach to producing better object has some member variables or member functions, the identi-
type-error messages for languages with type inference such asfier can be followed by a dot and the names. This can be made into
OCaml and @+. They generate well-typed programs from an ill- a chain so that we can obtain various types of expressions. Alter-
typed program by replacing a program fragment that causes thenatively speaking, functional and object oriented languages apply
type error with a “wildcard” expression, which plays the same role functions in reverse order: in an object oriented language, we give a
as a dummy node in this paper. As well as the work by Haack et parameter like “this” firstly, and then name the function (method),
al. [14], this work might be utilized to cope with programs with where in functional languages it's the other way around. So in ob-
type error by replacing the fragments that cause the type error with ject oriented languages filtering by types may not be effectively

10.5 Remark about object oriented languages

dummy nodes. applied.

10.3 Term generation 11. Conclusions and future work

There have been some studies concerning term generation, some of, this paper we have presented an approach to completing variable
which we discuss in the followings. names for implicitly typed functional languages. We have specified

Hashimoto [15] constructed an ML-style programming lan- he variable completion problem in the simplest form and given
guage with first-class contextse., expressions with holes. Holes 5 gojytion to the problem. The key ideas of our approach were
correspond to dummy nodes in this paper, but his language has thgpe yse of cursor and dummy nodes and insertion of marks. By
operation for filling holes as a language construct while ours does using these ideas we have successfully developed basic mechanism
not. . of variable name completion system, based on which we plan to

Some tools have been developed for generating terms undergeyejop systems for real languages like Haskell, Standard ML,
type constraint. One is Djinn [3], which generates a term having ocami, and so on. In order to extend our solution to cover these

a given type, and another is to generate a minimum term having a|angyages there are several things to overcome, which we leave as
given type [16]. In these tools a type is given for generating terms ¢,1re work.

while in our variable name completion system, given a prefix term,
we generate a term having dummy and mark expressions without e Computation of candidates processes the program text from the

being given a type. beginning of the text to the cursor position whenever a character
Rittri [20] developed a method to search for an identifier in a is input, so many redundant computation may be performed. In
program library by using types as search keys, regariiognor- real program development, a program is divided in many files

phic types under some equivalence relation, considering argument each of which is not so large. What really matters is the time
permutation and the currying-uncurrying, as the same one. Runci- to process the program in the file currently edited. In particular
man et al. [23] independently developed a method for the same we can compute necessary information in advance about the
problem by regarding types that are unifiable as the same. They also identifiers declared in libraries. Moreover in the future we may

incrementalize the completion algorithm, which decreases the [8] Leksah.http://leksah.org/.

time to compute the candidates. There is much work about the [9] 0caml Development Toolsattp: //ocamldt . free.fr/.

reuse of computation, so we expect they might be used for the [10] OCamiSpotter. http://jun. furuse.info/hacks/
reuse of intermediate results of parsing and type inference. For ocamlspotter/.

example, as for the reuse of type inference, Aditya et. al. [12]
proposed an incremental algorithm for type inference. His work
is to enable type inference to be performed in units of the top-
level declarations.

[11] Tuareg mode.http://www-rocq.inria.fr/~acohen/tuareg/
index.html.en.

[12] Shail Aditya and Rishiyur S. Nikhil. Incremental polymorphism. In
Proceedings of the 5th ACM Conference on Functional Programming

e When there is an error in the beginning of a program, the vari- Languages and Computer Architectupages 379-405, Cambridge,
able name completion does not work for the entire program USA, 1991.
since we assumed that the program text before the cursor is[13] Roberto Di Cosmo. Type isomorphisms in a type-assignment frame-
given completely without any syntax error or type error. This work. InProceedings of the 19th ACM SIGPLAN-SIGACT symposium
assumption is too strict, so we are planning to extend the com- on Principles of programming languageBOPL '92, pages 200-210,

pletion algorithm to handle the programs having syntax errors New York, NY, USA, 1992. ACM.

in some way similar to error recovery in parsing. As for the [14] Christian Haack and J. B. Wells. Type error slicing in implicitly typed
programs having type errors, we discussed in Section 10. higher-order languagescience of Computer Programmirig0:189—

224, 2004.

Masatomo Hashimoto. First-class contexts in ML.Alsian Comput-

ing Science Conferenceolume 1538 of_ecture Notes in Computer
Sciencepages 206—223. Springer, 1998.

Susumu Katayama. Systematic search for lambda expressions. In
Trends in Functional Programmingages 111-126, 2005.

[17] Benjamin Lerner, Matthew Flower, Dan Grossman, and Craig Cham-
bers. Searching for type-error messagesPLDI '07: Proceedings

In order for our approach to scale up to the level of real lan-
guages, the completion algorithm has to cope with many con- (15]
structs including mutually recursive function declarations, in-

fix operators, pattern matching, modules, and type annotations.
We expect that pattern matching, type annotations, and mod- (16]
ules should be naturally handled. We believe our framework
works well with infix operators by extending the meaning of
marked nodes to include the application of infix operators as of the 2007 ACM SIGPLAN conference on Proaramming Lanauage
well as usual prefix function applications. Note that infix oper- Design and Implementatiohlew York, NY, USA 2%07 ACl\g/l Pregs g
ators have to be used syntactically together with the operands, o ro e -

so we have only to consider the infix operators already declared [18] Robin Milner. A theory of type polymorphism in programming.
before the cursor node, except for those declared after the cur- Jour_nal (_)f Computer and System Sc'emdg‘3)'348__375’ 1978.

sor position, which may be the case in mutually-recursive dec- [19] Robin Milner, Mads Tofte, Robert Harper, and David MacQuekite
larations or in Haskell-like languages. In this case we may have Definition of Standard ML (RevisedJhe MIT Press, 1997.

to explicitly require users that the infix operators should be de- [20] Mikael Rittri. Using types as search keys in function libraries. In
fined before their use. As for mutually recursive function dec- Proceedings of the fourth international conference on F’unctlonal pro-
larations, we expect the usual type inference works with nat- %rﬁlminégg,\:ang\l;agkestnSScAornl%ugtger :CrcmltectuF@CA 89, pages
ural modifications. To be concrete, when encountering some s ew York, ' ' : :))
unknown identifiers, which may appear in mutually recursive [21] Romain Robbes and Michele Lanza. How program history can im-

; ; ; ; ; prove code completion. IRroceedings of the 2008 23rd IEEE/ACM
function declarations, we simply assign a fresh type variable to International Conference on Automated Software Engineci&E

the unknown identifiers. '08, pages 317-326, Washington, DC, USA, 2008. IEEE Computer
¢ In Haskell variables can be used before their bindings. In ML Society.

languages variables can be used before their bindings in mu-[22] John A. Robinson. A machine-oriented logic based on the resolution
tually recursive function definitions. Our framework is not di- principle. Journal of the ACM12(1):23-41, 1965.

rectly applied to these situations since currently we do not use [23] Colin Runciman and lan Toyn. Retrieving re-usable software compo-
the program text after the cursor position according to the prob- nents by polymorphic type. IRroceedings of the fourth international
lem specification. In the future we intend to overcome the situ- conference on Functional programming languages and computer ar-
ation by enlarging the problem specification. chitecture FPCA '89, pages 166-173, New York, NY, USA, 1989.

ACM.

[24] Andrew Wright. Simple imperative polymorphisniLISP and Sym-

ACknOWIedgmentS bolic Computation8:343-355, 1995.

We would like to thank the anonymous referees for many helpful
comments and for pointing out the paper in ASE 2008.

References
[1] Caml mode http://www.emacswiki.org/emacs/CamlMode.

[2] Content assist. http://help.eclipse.org/help32/index.
jsp?topic=/org.eclipse.platform.doc.isv/guide/
editors_contentassist.htm.

[3] Djinn. http://permalink.gmane.org/gmane.comp.lang.
haskell.general/12747.

[4] Eclipse FP.http://eclipsefp.sourceforge.net/.

[5] EmacsWiki: Auto complete. http://www.emacswiki.org/
emacs/AutoComplete.

[6] Java development environment for Emacs. http://jdee.
sourceforge.net/.

[7] KMyacc. http://www005.upp.so-net.ne. jp/kmori/kmyacc/.

