
Toward Modular Implementation of
Practical Identifier Completion
on Incomplete Program Text

Isao Sasano
Shibaura Institute of Technology, Tokyo, Japan

sasano@sic.shibaura-it.ac.jp

ABSTRACT
Identifier completion is a widely-used functionality in IDEs
like Eclipse and editors like Emacs and vi. In this paper we
present how to implement identifier completion for a core
of functional languages with a focus on coping with incom-
plete program text based on error recovery in LR parsing.
We believe the present work is a first step toward building
practical identifier completion in IDEs for functional lan-
guages in modular way by reusing the code in compilers.
We also give a specification of the identifier completion and
argue that our solution conforms to it.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Applicative (functional) languages; D.2.3 [Software
Engineering]: Coding Tools and Techniques—Program ed-
itors

General Terms
Reliability, Theory, Languages

Keywords
identifier completion, functional languages, lambda calculus,
parsing, error recovery, Emacs mode

1. INTRODUCTION
Identifier completion is a widely-used basic functionality

in integrated development environments (IDEs) like Eclipse.
Editors like Emacs and vi can also be considered IDEs by
adding various features depending on languages. Recent
IDEs provide identifier completion that takes into account
the context surrounding the position of the identifier to be
completed. Such completion is called intellisense in Vi-
sual Studio, omni completion in vi, and content assist [3]
in Eclipse plugins for various languages. We call such com-
pletion as context sensitive in the rest of the paper.

Copyright c©ICST, 2014. This is the author’s version of the work. It is
posted here by permission of ICST for your personal use. Not for redistri-
bution. The definitive version will be/was bublished in: Proceedings of the
8th International Conference on Bio-inspired Information and Communi-
cations Technologies, December 1-3, 2014, Boston, Massachusetts, United
States.

Major languages like C and Java have IDEs with useful
functionalities like identifier completion or various refactor-
ings, but minor languages like Standard ML and Haskell do
not at this moment. Developing IDEs takes considerable
amount of time and IDEs for minor languages are not ex-
pected to be actively developed. In addition programmers
may not be attracted to use languages that do not have IDEs
with enough functionalities.

In order to remedy such situations, it is desirable to make
it easy to develop IDEs. A promising way is to reuse the
compiler code for implementing IDEs. Most basic one is lex-
ical analyzer, which is probably used by many of the IDEs.
Others presumably include parsing and in some cases type
checking when the language is statically typed. Some of the
functionalities IDEs provide, like identifier completion, are
used while writing programs and others, typically refactor-
ings, are used after writing programs. This paper focuses on
identifier completion in the situations where some parts of
the program text are incomplete or having mistakes in the
lexical and syntactic level.

Developers of IDEs may have their own policy to cope
with incomplete program text and may not specify or explic-
itly explain the functionalities of the IDEs. Programmers
may hesitate to use IDEs if the specification of the func-
tionalities are unclear. The proficient programmers would
like to know the behavior of IDEs in detail so that they can
precisely predict the behavior of IDEs.

In this paper we present an approach to implementing
identifier completion with the following features.

• Identifier completion is clearly specified.

• Identifier completion is implemented by reusing the
code in compilers as much as possible.

• Behaviors of identifier completion are predictable or
controllable by programmers with a certain degree of
knowledge about language processing like LR parsing.

The rest of the paper is organized as follows. Section 2
shows our basic ideas and outline of our solution. Section
3 specifies the identifier completion problem. Section 4 de-
scribes our implementation as an Emacs mode for a small
subset of Standard ML and give some analysis. Section 5
discusses related work. Section 6 describes future work and
concludes the paper.

2. BASIC IDEAS
Here we show our idea to cope with incomplete program

description in completing identifiers. Note that we do not

care about the type consistency in this paper for simplicity.
The idea is simple: to use the functionality of the error
recovery in LR parsing, more specifically, Yacc. Although
we present the idea in a core of functional languages, it is not
essential and the idea can be applied to any other language
provided that its syntax is given as an LR grammar.

Yacc [5] is a parser generator for the language C based on
LR parsing, more specifically LALR(1), and there are many
Yacc-like systems for various languages. Error recovery is
supported in Yacc and most Yacc-like systems and the er-
ror recovery in Yacc is illustrated in the Yacc web page [5,
Section 7] and in a compiler textbook [2, Section 4.9.4].

We briefly review the error recovery in Yacc here. An
error is detected when the parser consults the parser table
for the current lookahead symbol (token) and the current
state and finds no action to do in the corresponding entry
in the table. If an error is detected, the parser gets into the
error-handling mode and pops its stack until it enters a state
where the terminal symbol error is legal. It then behaves
as if error were the current lookahead terminal symbol, i.e.,
performs the action in the entry for the state and the sym-
bol error in the table. The lookahead symbol is then reset
to the symbol that caused the error. In order to prevent
a cascade of error messages, the parser, after detecting an
error, remains in the error-handling mode until three con-
secutive terminal symbols have been successfully read and
shifted. If an error is detected when the parser is already in
the error-handling mode, no message is given, and the input
terminal symbol is quietly deleted.

In the identifier completion of our approach, the parser
generated by Yacc-like system reads the program text being
currently edited and constructs a parse tree with some text,
like keywords, being added or deleted. Based on the con-
structed parse tree, our system computes the candidates to
be completed with taking into account the scopes of identi-
fiers. The error recovery is controlled by the location where
the developers of IDEs insert the special token error.

Several ways have been developed to recover from errors
in LR parsing and we list four of them here: panic-mode
recovery, phrase-level recovery, hand-writing error-handling
routines, and error recovery in Yacc. In the present pa-
per we select the fourth way, the error recovery in Yacc,
from the point of view of reuse of code in the compiler. Al-
though other selections, especially (partially) hand-writing
error-handling routines, may be suitable for practical situa-
tions, but we leave them as future work.

3. SPECIFICATION OF IDENTIFIER COM-
PLETION PROBLEM

In this section we specify the problem that we solve in
this paper. We use the following core functional language of
static scope, on which we specify the problem.

M ::= x | c | λx.M | M M | (M)

| let x = M in M end

Here x represents a variable, c represents a constant like an
integer, λx.M represents a lambda abstraction, M M rep-
resents a function application, and let x = M in M end
represents a let expression. We have explicitly included the
parentheses in the core language in order to express situa-
tions where there are open parentheses not yet closed. We
excluded type annotations from the syntax for simplicity.

Problem 1 (Variable completion). Given a (incom-
plete) term M with a cursor that points at partially input
identifiers (including empty spelling) in M , compute candi-
dates to be completed at the cursor position. The candidate
identifiers should have as their prefixes the (partial) spelling
at the cursor position. If one of them is selected and com-
pleted by the users, the obtained term M ′, possibly with some
tokens being deleted or added, constitutes a syntactically le-
gal term that satisfies the scope rule.

The above problem specification literally implies that any
identifier can be a candidate to popup only if it has as its
prefix the (partial) spelling at the cursor position, since the
specification allows tokens to be freely added or deleted.
Since the aim of this paper is to make a first step toward
the practical completion system, we make the specification
a little loose enough to allow flexible development of the
system and in the future may refine the specification to suit
practical situations.

4. IMPLEMENTATION
Based on the basic ideas described in Section 2 we have

developed an Emacs mode that provides identifier comple-
tion for a small subset of the Standard ML [6], which is a
functional language of static scope. The source code for the
Emacs mode is available on our web page http://www.cs.

ise.shibaura-it.ac.jp/mpse2014/. The Emacs mode is
implemented by using Emacs Lisp and C, where the pro-
gram in C is a server to compute the candidates and the
program in Emacs Lisp sends all the program text in the
current buffer and the location of the cursor to the server
written in C. It is rather common to write relatively com-
plex computation in languages other than Emacs Lisp. We
use Lex and Yacc to generate the program in C.

4.1 Concrete syntax of the core language
As the target language of the implementation we use the

following concrete syntax for the core language described in
Section 3.

start ::= exp
exp ::= appexp

| fn id ⇒ exp
appexp ::= atexp

| appexp atexp
atexp ::= id

| num
| (exp)
| let dec in exp end

dec ::= val id = exp

The above language is a subset of Standard ML. As for
the correspondence with the core language in Section 3,
fn id ⇒ exp corresponds to lambda abstraction λx.M and
num corresponds to constant c. In Standard ML the key-
word val is used for indicating value declarations, in order
to distinguish them from function declarations, which we do
not use in the present paper.

In the above language identifiers are introduced in the
declaration dec and the function fn id ⇒ exp. The scope of
the identifier id in val id = exp is exp and the scope of the
identifier id in fn id ⇒ exp is exp, with each excluding the
scopes of the same id introduced in the respective exp.

4.2 A specification of error recovery
In Yacc, recovering from errors is specified by the locations

of inserting the special terminal symbol error, which is a
reserved word in Yacc to suggest places where errors tend
to occur, into the syntax description for Yacc. We show a
way of inserting error into the syntax description given in
Section 4.1. In the following example error is inserted into
two locations.

start ::= exp (1)
exp ::= appexp (2)

| fn id ⇒ exp (3)
appexp ::= atexp (4)

| appexp atexp (5)
atexp ::= id (6)

| int (7)
| (exp) (8)
| let dec in exp end (9)
| let dec in exp error (10)

dec ::= val id = exp (11)
| error (12)

There are various ways to insert error to the specification.
In the future we would like to develop a systematic way for
finding suitable locations for inserting the symbol error.

4.3 Action description in Yacc
We use Yacc to generate the parser with error recovery.

The output of the parser is a syntax tree with some portion
of the original text being deleted or some keywords like end

being added. For example, for the rule (9) and (10) in the
specification in Section 4.2, the action is described as follows.

| LET dec IN exp END

{

$$ = make_atexp4 ($2, $4);

}

| LET dec IN exp error

{

$$ = make_atexp4 ($2, $4);

}

The action description is same for the two rules, which means
that the keyword end, which corresponds to the token END,
is virtually inserted if it is missing. Note that the syntax
tree is important in our system even if there is any syntax
error, while in compilers it does not matter.

4.4 An example
The following is a program fragment in Standard ML,

where we inserted the underscore _ for representing the cur-
sor position. This kind of situation sometimes happens when
the programmer starts writing the body of a let expression
after writing the keyword end.

let val xx = 1

in let val xy => 2

in x_

end

This fragment has a syntax error, where => is the cause of the
error. The error would not occur if => were =. Another error
is that end is missing after the end in the above fragment,
since Standard ML requires end for each let. In this case
one end was written in advance and the other end will be

written later. Generally it depends on programmers in which
order the program text is input.

The Emacs mode we have implemented successfully copes
with these two errors and shows the candidate xx in the
popup window. Virtually for the first error the fragment val
xy => 2 is deleted and for the second error end is added and
thus the obtained candidate xx conforms to the specification
of PROBLEM 1, although these deletion and addition are
not applied to the program text in the current buffer. Figure
1 shows the screen shot of the completion for this example.

Figure 1: A screen shot of popup in the Emacs mode

4.5 Discussions
Here we analyze how the locations of inserting error affect

the error recovery. We guess in general there is no way to
cover all the possible ways to recover from syntax errors.
The following is a program fragment for showing the error
recovery does not work in the setting of the specification (1)
to (12) in Section 4.2.

let val xx = 1

in let val xy => 2

in x_

The fragment is obtained by deleting end from the fragment
in Section 4.4, so two ends are missing. To cope with this
situation it may be suitable to use yyerrok;, which is a
statement that can be used in the action descriptions in the
specification of Yacc, to force the parser to get back to its
normal mode even if three consecutive terminal symbols are
not yet shifted after getting into the error-handling mode.

5. RELATED WORK
There are a few academic work directly concerning iden-

tifier completion. In [4, 8] identifier completion for a core
of functional languages was presented with considering type
consistency. The work considered a simple case with the
program text given completely without any syntax errors or
type errors up to the cursor position. This is too strict and
the present work relaxed the restriction to allow programs
having syntax errors in various points, including the text
before the cursor position.

Robbes et al. [7] pointed out that finding the candidate
from the pop-up window can be slower than typing the full
name. They made some assumptions that programmers are
likely to use methods they have just defined or modified and
that local methods are called more often than the ones in
other packages. They claim that the computed candidates
include the one the programmer is looking for with high
probability. While their approach is based on statistics, our
approach is based on error recovery in LR parsing, which
means the behavior can be precisely predicted.

Several work about error recovery has been done. One
[10] is about phrase-level error recovery and local correction
used in LR parsing in Helsinki Language Processor. When
the parser detects an error, the parser tries to find a nonter-
minal symbol A that is legal by some state q on the stack
and an input terminal symbol, not yet read, that is legal
at the state goto(q, A). The recovery from errors and local
correction may undesirably strongly depend on the descrip-
tion of the grammar. Another is about panic mode error
recovery. When any error is detected, the parser skips input
terminal symbols until some suitable symbol, called synchro-
nizing token, is found. The error recovery in Yacc is a kind
of mixture of the phrase-level error recovery and the panic
mode. In Yacc, the programmer specifies where the error is
allowed by inserting the special symbol error and the error
recovery in Yacc also strongly depends on the location of the
symbol error.

As for the reuse of compiler code for IDEs, Schäfer et al.
[9] presented an implementation of renaming functionality
for Java on Eclipse.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented how to cope with incomplete

program description in completing identifiers using error re-
covery in Yacc. Although we described our idea in a core
of functional languages, the approach itself can be applied
to any other language, provided that its syntax is given in
an LR grammar. We believe this is the first work to de-
velop parser-based identifier completion for practical situ-
ations where some portions of the program are unfinished.
We have developed basic mechanism of identifier comple-
tion system with allowing the program having syntax errors
typically due to the existence of unfinished portions of the
program text. Based on the present work concerning the
incompleteness of the program text and the work [4, 8] con-
cerning the type-directed completion, we plan to develop
systems for functional languages like Haskell, Standard ML,
OCaml, and so on. In order to extend our solution to cover
these languages there are several things to overcome, which
we leave as future work and describe below.

One is to incorporate the work [4, 8] about type-directed
completion into the present work allowing incomplete pro-
gram description, which is expected to be done modularly.

The identifier completion presented in this paper com-
putes candidates from scratch every time when the program-
mer types a key, so much redundant computation may be
performed. In real program development, a program is di-
vided in many files each of which is not so large. What
really matters is the time to process the program in the file
currently edited. In particular we can compute necessary
information in advance about the identifiers declared in li-
braries. Moreover in the future we may incrementalize the
completion algorithm, which decreases the time to process
the file currently edited. There is much work about the reuse
of computation and we expect they might be used for the
reuse of intermediate results of parsing and type inference.
For example, Aditya et. al. [1] proposed an incremental al-
gorithm for type inference. His work enables type inference
to be performed in units of the top-level declarations. In
the future we plan to develop identifier completion system
for real functional languages such as Standard ML, Haskell,
OCaml, and so on based on the ideas including ours.

In the error recovery identifiers may be discarded from the

stack and thus not included in the resulting parse tree. It
would be desirable for such identifiers to be candidates to
be completed provided that they suit the context. We will
try not to delete identifiers as much as possible.

Although in this paper we focus on identifier completion,
we plan to develop context-sensitive completion of expres-
sions, keywords, patterns for syntax, and so on, based on
error recovery in LR parsing and type checking.

In the current implementation the specification for Yacc
is written by hand since the language was very small. In the
future we plan to use the specification for Yacc-like systems
in compilers for functional languages like Standard ML.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous referees for many

helpful comments. The use of error recovery in the LR pars-
ing to implement identifier completion was presented in Mas-
ter’s thesis of Satoru Suwa [11] under the supervision of the
author. This work was partially supported by JSPS KAK-
ENHI Grant Number 25730047.

8. REFERENCES
[1] Shail Aditya and Rishiyur S. Nikhil. Incremental

polymorphism. In Proceedings of the 5th ACM
Conference on Functional Programming Languages
and Computer Architecture, pages 379–405, 1991.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and
Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison Wesley, second edition, 2007.

[3] Content assist. http://help.eclipse.org/help32/
index.jsp?topic=/org.eclipse.platform.doc.isv/

guide/editors_contentassist.htm.

[4] Takumi Goto and Isao Sasano. An approach to
completing variable names for implicitly typed
functional languages. In Proceedings of the ACM
SIGPLAN 2012 workshop on Partial Evaluation and
Program Manipulation, pages 131–140, 2012.

[5] Stephen C. Johnson. Yacc: Yet another
compiler-compiler. http:
//dinosaur.compilertools.net/yacc/index.html.

[6] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

[7] Romain Robbes and Michele Lanza. How program
history can improve code completion. In Proceedings
of the 23rd IEEE/ACM International Conference on
Automated Software Engineering, pages 317–326, 2008.

[8] Isao Sasano and Takumi Goto. An approach to
completing variable names for implicitly typed
functional languages. Higher-Order and Symbolic
Computation, pages 1–37, 2013.

[9] Max Schäfer, Torbjörn Ekman, and Oege de Moor.
Sound and extensible renaming for Java. In
Proceedings of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages
and Applications, pages 277–294, 2008.

[10] Seppo Sippu and Eljas Soisalon-Soininen. Practical
error recovery in LR parsing. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 177–184, 1982.

[11] Satoru Suwa. Master’s thesis, Shibaura Institute of
Technology, Japan, 2013. in Japanese.

