
Generation of Efficient Algorithms for
Maximum Marking Problems

(和訳: 最大マーク付け問題の効率的解法の自動生成)

Isao Sasano

Acknowledgments

First I would like to thank to Prof. Masato Takeichi for giving useful com-
ments to this work and letting me do this work freely. Second I would like to
thank to Zhenjiang Hu for giving useful comments to this work and having
several discussions. Third I would like to thank to Mizuhito Ogawa for let-
ting me know interesting papers about graph algorithms and having several
meetings on this work, and to Akihiko Takano for giving useful comments
and encouraging me.

This work owes much to the thoughtful and helpful discussion comments
made by Hideya Iwasaki, and other Tokyo CACA members. Thanks to
Jeremy Gibbons for his valuable comments on an earlier version of our paper
accepted to ICFP 2000, to Oege de Moor for providing us several interest-
ing optimization problems, to Richard Bird for kindly sending us his draft
about deriving linear time algorithm for maximum marking problems using
relational calculus, to Shinichi Morishita for introducing us the problems of
data mining.

i

Contents

1 Introduction 1
1.1 Optimization Problems . 1
1.2 Program Derivation . 2
1.3 Maximum Marking Problems 4
1.4 Existing Approaches . 5
1.5 Program Generation . 6
1.6 Our proposing method . 7
1.7 A Tour . 8

1.7.1 Specification . 8
1.7.2 Derivation . 10
1.7.3 Remarks . 12

1.8 Organization of this thesis . 13

2 Preliminaries 14
2.1 Recursive Data Types . 14
2.2 Catamorphism . 15
2.3 Mutumorphisms . 16
2.4 Notation . 16

3 Maximum Marking Problems 18
3.1 A Formal Definition . 18

3.1.1 Marking . 19
3.1.2 Weight . 20
3.1.3 Maximum Weightsum Problem 21

3.2 Examples . 21
3.2.1 Tree Knapsack Problem 22
3.2.2 r-MSS Problem . 22
3.2.3 Party Planning Problem 22

ii

3.2.4 Coloring Problem . 23
3.3 Existing Solution — Borie’s Approach 23

4 Derivation of Efficient Algorithms 25
4.1 A Sufficient Condition about Property 25
4.2 A Sufficient Condition about Weight Function 31

4.2.1 Homomorphic Weight Function 32
4.2.2 Generalized Optimization Lemma 32

4.3 Decomposition Lemma . 33
4.3.1 Property with Boolean Functions 34
4.3.2 Property with Finite-range Functions 34

4.4 The Main Theorem . 35
4.5 Extension of property . 36

4.5.1 Finite Accumulative Property 37
4.5.2 Theorem . 38

4.6 Calculation Strategy . 40

5 Examples 47
5.1 Paragraph Formatting Problem 47
5.2 Security Van Problem . 49
5.3 Knapsack Problem . 51

5.3.1 Specification . 51
5.3.2 Property by Finite Mutumorphisms 52
5.3.3 Property by Finite Accumulative Property 52
5.3.4 Weight function . 53
5.3.5 Derivation by Theorem 4 53
5.3.6 Derivation by Theorem 3 53

5.4 Knapsack Problem on List . 54
5.4.1 Specification . 54
5.4.2 Derivation . 54

5.5 Tree Knapsack Problem . 55
5.5.1 Specification . 55
5.5.2 Derivation . 57

5.6 0-1 Multiple Knapsack Problem 57
5.6.1 Specification . 57
5.6.2 Derivation . 58

5.7 Multidimensional Knapsack Problem 58
5.7.1 Specification . 59

iii

5.7.2 Derivation . 59
5.8 Weighted Interval Selection Problem 60
5.9 Mining Optimized Gain Association Rules 61

5.9.1 The Problem of Mining Optimized Gain Association
Rules . 62

5.9.2 Constructing k-MSS Algorithm Manually 64
5.9.3 Deriving k-MSS Algorithm Automatically 65
5.9.4 Specification . 65
5.9.5 Derivation . 66
5.9.6 Comparison . 67
5.9.7 Dealing with Change of Specification 68
5.9.8 Remarks . 68

5.10 Features . 69
5.10.1 Simplicity . 69
5.10.2 Generality . 72
5.10.3 Flexibility . 74

6 Automatic Generation of Efficient Programs 77
6.1 MAG system . 77

6.1.1 Implementation . 78
6.2 Yicho System . 80

6.2.1 Structure of automatic generation system 81
6.2.2 Calculation Carrying Program (CCP) 82
6.2.3 Execution of CCP and transformation to script 91
6.2.4 Example of maximum marking problems 96
6.2.5 Summary . 100

7 Related Work 101

8 Conclusion 110

Bibliography 112

iv

Abstract

In existing work on graph algorithms, it is known that a linear time al-
gorithm can be derived mechanically from a logical formula for a class of
optimization problems. But this has a serious problem that the derived al-
gorithm has huge constant factor. In this work, we redefine this problem
on recursive data structures as a maximum marking problem and propose
method for deriving a linear time algorithm for that. In this method, spec-
ification is given using recursive functions instead of logical formula, which
results in a practical linear time algorithm. This method is mechanical and in
fact, based on this deriving method, we make a system which automatically
generates a practical linear time algorithm from specification for a maximum
marking problem.

Chapter 1

Introduction

This thesis proposes an automatic method for deriving linear time algorithms
for a class of optimization problems, which we call maximum marking prob-
lems. In this chapter firstly we describe what kind of optimization problems
maximum marking problems include. Secondly we show why derivation is de-
sired and what kind of methods one can use for deriving efficient algorithms
generally. Thirdly we discuss about program generation and mention that
our method is appropriate for program generation. Fourthly we describe the
contribution of this thesis. Finally we show give an overview of our genera-
tion method through an example and then close this chapter by giving the
organization of this thesis.

1.1 Optimization Problems

Many problems can be specified in the way ”maximize (or minimize) certain
value under some condition”. Such problems are generally called optimiza-
tion problems. For example, the knapsack problem [MT90] is an example
of optimization problems. Other examples include problems in data mining,
e.g., optimal range problems [FMMT96a]. Efficient algorithms for optimiza-
tion problems are needed, so developing efficient algorithms for optimization
problems is important task.

Here consider the three examples: the tree knapsack problem, r-MSS
problem, and the party planning problem. Developing efficient algorithms
for these problems is not so trivial.

Tree Knapsack Problem [dM95] This problem is an extension of the or-

1

dinary knapsack problem [MT90] to one on tree. Input of the ordinary
knapsack problem is a set of items each of which has weight and value.
Output is a feasible selection of items whose value sum is maximum
in all the feasible item selections. A selection is feasible when sum of
weight of selected items does not exceed the given capacity C. Tree
knapsack problem is an extended version of the ordinary knapsack prob-
lem so that items are arranged in a tree structure and selected items
are connected, that is, a set of items induces a connected subgraph of
the input given tree. We assume weight of items are integers.

r-MSS Problem [BRS99] This problem is an extension of the maximum
segment sum problem, which is a famous problem in program derivation
field [Bir89, Gri90]. This problem appears in a problem of data mining,
optimum range association rules problem [BRS99]. Input is a sequence
of numbers. Output is a feasible selection of elements whose sum is
maximum in all the feasible element selections. A selection is feasible
when selected elements form up to r connected subsequences. When
r = 1, it is the ordinary maximum segment sum problem.

Party Planning Problem [CLRS01] Professor McKenzie is consulting
for the president of the A.-B Corporation, a company that has a hier-
archical structure. That is, the supervisory relations form a tree rooted
at the president. The personnel office has ranked each employee with
a conviviality rating that is a positive or negative real number. The
president wants to have a company party. To make the party fun for
all attendees, the president does not want both an employee and his
or her direct supervisor to attend. The problem is to design a linear
algorithm making the guest list. The goal is to maximize the sum of
the conviviality ratings of the guests.

How can we develop efficient algorithms for these problems? Using our
proposing method, one can obtain efficient linear algorithms for these prob-
lems by a mechanical way and can obtain them fully automatically by using
our system for MMP.

1.2 Program Derivation

Consider the examples we showed in the previous section. When efficient
algorithms are asked for, usually people first think about how to solve them

2

and then write efficient programs by hand. This is ordinary way which is
generally taken. But this ordinary method is not satisfactory because cor-
rectness of algorithms is not guaranteed. Developing a correct algorithm is
important because if an algorithm is not correct, then anyone doesn’t want
to use it. If an algorithm is used for an important purpose, then correctness
is crucial. So, guaranteeing correctness of algorithm is needed.

But generally speaking, writing an correct and efficient program by hand
directly is difficult task. In many cases, after writing a program, one have
to repair syntax error or semantic error. In some cases, removing bugs from
a program takes longer time than writing the program. Furthermore, spec-
ification of a problem may be changed in the future. If it is changed, then
modifying suitable part of the program is difficult if an other programmer
than wrote the original program has to modify it. Even the programmer
who wrote the original one feels difficulty in it if it has passed long time since
writing the original one.

One way to remedy those problems is to use program derivation: deriving
an efficient program from specification [PP96]. The task is to obtain an
efficient program from specification. To guarantee that the obtained program
satisfies specification, it is only required that each derivation step should be
correct. Using program derivation, correctness and efficiency are obtained at
the same time. Furthermore, when the problem is changed slightly, then one
only has to change the specification slightly and do a similar derivation in
the case it is possible.

Specification is written in some language such as logical formula, function,
relation, and so on. In this thesis, we use specification written in function.
Derivation process consists of several transformation steps. A transformation
step is a transformation that transforms a function to another function, which
preserves the meaning. A feature of functional specification is that specifica-
tion itself can be executed. Programmer first writes a program which may be
inefficient but is guaranteed correct, which can be considered as a specifica-
tion. Here, efficiency of a function means the number of reduction steps for
evaluating the function when implementing the function in some functional
language such as Haskell [PJH99, Bir98], ML [MTHM97, Pau96] or Scheme
[ADH+98, AwJS96]. Program derivation is performed by applying certain
transformation rule to the function in each stage and finally an efficient func-
tion will be obtained. Generally program derivation is not done mechanically
since there are several possible selections in each stage.

3

1.3 Maximum Marking Problems

We concentrate on a class of optimization problems, which we call ” maxi-
mum marking problems” (MMP for short). The MMP can be specified as
follows: Given a data structure x, the task is to find a way to mark some
elements in x such that the marked data structure of x satisfies a certain
property p and has the maximum value with respect to certain weight func-
tion w. This means that no other marking of x satisfying p can produce a
larger value with respect to w.

By restricting the class of optimization problems to MMP, it becomes
possible to derive mechanically a linear time algorithm for solving it from
simple specifications. Though of course it is not expected to derive a linear
one for every MMP problem since MMP includes NP-hard problems, we can
derive a linear one mechanically if property p and weight function w satisfies
certain condition. Our method is mechanical, so we can implement it as a
system which automatically generates linear time algorithms for MMP.

MMP not only is suitable for automatic generation but also is general
enough to express wide range of optimization problems. So we can say that
MMP is an appropriate class of problems in that sense.

Originally MMP was considered in graph algorithms in less general form:
to find a subset of the vertex set which satisfies certain property and has
maximum sum of weight of vertices [BLW87]. This is a sub-class of MMP,
which we call ”maximum weightsum problems” [SHTO00, SHTO01a], where
one can only allowed to use the wsum, which computes sum of selected ele-
ments, as the weight function and to use two kinds of marks, True and False,
which indicate select and non-select respectively. This sub-class includes
many graph problems and a sufficient condition of property p for linearity
was given by [BLW87].

By MMP, we can express various kinds of problems which include the
problems we show in Section 1.1. Though those examples seems a bit dif-
ferent, they can be formulated in the uniform way: Given a data x, find a
feasible selection of elements whose weight is maximum in all the feasible se-
lection. By expressing feasibility using a predicate p and giving weight using
a weight function w, we can write the specification as follows:

↑w / ◦ filter p ◦ gen [True,False]

Here gen is used for generating all the way of selecting elements with marks
True and False. Selection is expressed by marking selected elements and un-

4

marking non-selected elements, where True corresponds to ”mark” and False
corresponds to ”unmark”. The operator ↑f is called the selection operator
[Bir87] and is defined by

a ↑f b = b, if f a ≤ f b
= a, otherwise.

In this definition, the value of a ↑f b is b when f a = f b. The operator / is
called the reduce operator [Bir87], which takes an associative binary operator
and a list, defined as follows:

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

The differences between the three problems are in the different definitions of
the property description of p.

The properties for the tree knapsack problem, r-MSS problem, the party
planning problem, respectively denoted by ptk, prmss, and ppp are as follows:

• ptk: sum of weight of selected items does not exceed the given capacity
C and selected items are connected in the input tree.

• prmss: selected elements form up to r connected subsequences in the
input sequence.

• ppp: any two selected elements does not have direct parent-child rela-
tionship.

We shall refer to these kinds of problems, the main subject of this thesis,
as maximum marking problems. In general, a maximum marking problem is
to find a way of feasible marking the input data that maximize the value of
the given weight function w, where feasibility is given by certain property p.

1.4 Existing Approaches

The maximum marking problems are interesting in that they encompass a
very large class of optimization problems [BLW87, BPT92]. Solving maxi-
mum marking problems, however, requires much insightful analysis. There
are basically two kinds of approaches.

5

• The Algebraic Approach.

Using the algebraic laws of programs [Bir89, BdM96], one may try to
calculate efficient solutions to the problems by program transformation.
For instance, Bird derived a linear algorithm to solve the maximum
segment sum problem [Bir89], which is a maximum marking problem
on lists. Bird and de Moor [BdM96] demonstrated the derivation of
a greedy linear functional algorithm for the party planning problem
based on the relational calculus.

However, the success of derivation usually depends on a powerful calcu-
lation theorem and requires careful and insightful justification to meet
the conditions of the theorem. For many cases, such justification is dif-
ficult for (even experienced) functional programmers to mimic to solve
other similar problems.

• The Construction-from-predicates Approach.

Though little known in functional programming community, it has been
known for decades [AP89, Wim87, BLW87, BPT92] that if maximum
weightsum problems are specified by regular predicates [BPT92], they
are solvable in linear time on decomposable graphs and that linear-time
algorithms for them can be derived mechanically from the specifications
of the graph problems.

Though more systematic and constructive than the algebraic approach,
this approach yields algorithms that suffer from a prohibitively large
table (see Section 3.3 and Chapter 7 for details). The algorithm for
solving the party planning problem, for instance, would need to con-
struct a table with more than 2(2142) entries [BPT92]. The algorithms
thus cannot be put to practical use.

1.5 Program Generation

Program generation has seen an important role in a wide range of software
development processes. A successful program generation system requires not
only a powerful language supporting coding of program generation, but also
a set of effective transformation rules for the generation of programs. An
example, which convincingly shows the importance of the design of effec-
tive transformation rules, is the well-known fold-build rule [GLP93] for fus-

6

ing composition of functions in Glasgow Haskell Compiler (GHC). It is this
general, concise and cheap calculation rule that makes it possible for GHC
to practically generate from large-scale programs efficient programs without
unnecessary intermediate data structures. Generally, the effective rules for
program generation should meet several requirements.

• First, they should be general enough to be applied to a program pat-
tern, by which a useful class of problems can be concisely specified.

• Second, they should be abstract enough to capture a big step of the
program generating process rather than being a set of small rewriting
rules.

• Third, they can be efficiently implemented by program generation sys-
tems.

In this thesis we shall propose such a rule for generating efficient programs
from the following program pattern

mmp w p ms =↑w / ◦ filter p ◦ gen ms,

which is the specification of MMP. Our proposing method is a mechani-
cal method that derives a linear time algorithm for MMP from the above
program pattern. So our method is appropriate for automatic program gen-
eration from specification, and actually we implement our method as an
automatic program generation system for MMP in Chapter 6.

1.6 Our proposing method

In this thesis we propose a new approach to deriving practical linear- time
algorithms for maximum marking problems over data structures such as lists,
trees, and decomposable graphs. The key points of our approach are to
express the property p by recursive boolean functions over the structure x
rather than a usual logical predicate and to apply program transformation
techniques to reduce the constant factor, thereby exploiting the advantages
of the algebraic and construction-from -predicates approaches.

Our main contributions can be summarized as follows.

7

• We propose an optimization theorem that gives a generic and prac-
tical linear-time algorithms for solving maximum marking problems
(Chapter 4). By using the optimization theorem, we can derive practi-
cal linear-time algorithms for various kinds of problems which include
real-world problems such as knapsack problems, optimal range prob-
lems [FMMT96a] in the data mining, and many problems in Bird et
al.’s textbook [BdM96], as partly shown in Chapter 5.

• Our method is simple, general, and flexible. We demonstrate this
in Chapter 5 by deriving linear-time algorithms for various kinds
of interesting and nontrivial maximum marking problems. The
Haskell codes for solving some problems in this thesis are available
at http://www.ipl.t.u-tokyo.ac.jp/˜ sasano/mws.html.

• We are the first to successfully apply the algebraic approach to solving
the huge-table problem appearing in the derivation of linear-time al-
gorithms on decomposable graphs [AP89, Wim87, BLW87, BPT92], a
problem not solved by table compression [BLW87] or by dynamic table
management [APT00]. This should be a significant step in making the
theoretically appealing linear-time graph algorithms practically useful.

• We show that our proposing method can be implemented as an auto-
matic program generation system for MMP (Chapter 6). Our method
can be implemented using the existing transformation systems like
MAG [dMS98], and efficient programs can be obtained in a fully auto-
matic way. We also implement a flexible system called Yicho, in which
we can specify transformation strategies.

1.7 A Tour

Here we briefly explain our idea by going through the list version of the party
planning problem.

1.7.1 Specification

The list version of the party planning problem, which will be called the
maximum independent-sublist sum problem (mis for short), is to compute vs,
the set of elements from a non-empty list xs, such that no two elements in

8

mis :: [Elem] -> [MElem]
mis xs = let opts = mis’ xs

in getdata (foldr1 (bmax second)
[(c,w,cand)
| (c,w,cand) <- opts,
c==2 || c==3])

mis’ :: [Elem] -> [(Class,Weight,[MElem])]
mis’ [x] = [(2,x,[(x,True)]), (3,0,[(x,False)])]
mis’ (x:xs) =
let opts = mis’ xs
in eachmax [(table (marked mx) c,

(if marked mx then weight mx
else 0) + w,
mx:cand)

| mx <- [mark x, unmark x],
(c,w,cand) <- opts]

bmax f a b = if f a > f b then a else b

eachmax xs = foldl f [] xs
where f [] (c,w,cand) = [(c,w,cand)]

f ((c,w,cand) : opts) (c’,w’,cand’) =
if c==c’ then

if w>w’ then (c,w,cand) : opts
else opts ++ [(c’,w’,cand’)]

else (c,w,cand):f opts (c’,w’,cand’)

type Weight = Int
type Elem = Weight
type MElem = (Elem,Bool)
type Class = Int

weight::MElem -> Weight
weight (w,_) = w

marked :: MElem -> Bool
marked (_,m) = m

mark :: Elem -> MElem
mark x = (x,True)

unmark :: Elem -> MElem
unmark x = (x,False)

table :: Bool ->
Class -> Class

table True 0 = 0
table True 1 = 0
table True 2 = 0
table True 3 = 2
table False 0 = 1
table False 1 = 1
table False 2 = 3
table False 3 = 3

second (_,x,_) = x
getdata (_,_,x) = x

Figure 1.1: A linear-time Haskell program for the mis problem.

9

vs are adjacent in xs. Clearly, it is one of the maximum marking problems
on lists, which can be specified by

mis :: [α]→ [α]
mis xs = ↑ws / [vs | vs← subs xs, pmis(xs, vs)]

where subs enumerates all sublists (not necessarily contiguous) of a list.
What is left is to define pmis, the specific component of the problem.

Because vs is a sublist of xs, we can specify pmis in two steps: first marking
the elements in xs which belong to vs, and then on the marked xs defining
the property. Thus,

pmis(xs, vs) = p (marking xs vs).

Here p checks that all pairs of marked elements are not adjacent in the marked
xs.

p :: [α]→ Bool
p [x] = True
p (x : xs) = if marked x

then not (marked (hd xs)) ∧ p xs
else p xs

hd :: [α]→ α
hd [x] = x
hd (x : xs) = x

For later transformation, we define hd in the same way as p over the two cases
singleton list and cons list. So much for our specification of the problem. It
is worth noting that our specification is as natural as that in [BPT92] using
the monadic second-order logic (See Section 3.3). The critical difference is in
specifying p by using recursive functions instead of a logical predicate. This
enables us to use the functional program calculation for the later derivation.

1.7.2 Derivation

The derivation is based on our optimization theorem in Chapter 4, which
says that if the property description p can be defined in mutumorphisms
[Fok89, Jeu93, HITT97], then a linear-time algorithm solving the maximum
marking problem with respect to p can be derived mechanically.

10

Therefore, the derivation of a linear-time algorithm for the mis problem
reduces to be a derivation of mutumorphisms for p. More precisely, we hope
to transform p to the following form:

p [x] = φ1 x
p (x : xs) = φ2 x (p xs, p1 xs, . . . , pn xs)

where φi’s denote some functions and pi’s are auxiliary property descriptions
defined in a fashion similar to that in which p is defined:

pi :: [α]→ Bool
pi [x] = φi1 x
pi (x : xs) = φi2 x (p xs, p1 xs, . . . , pn xs).

Consider now the p for the mis problem. By introducing p1 defined by

p1 :: [α]→ Bool
p1 [x] = not (marked x)
p1 (x : xs) = not (marked x)

we can transform p to the following form.

p [x] = True
p (x : xs) = if marked x then p1 xs ∧ p xs else p xs

Applying our optimization theorem for solving maximum marking problems
now soon yields a linear-time algorithm like that in Figure 1.1, where the
algorithm is coded in Haskell. The function bmax in Figure 1.1 corresponds
to the selection operator ↑. The main function mis takes a list as its argument
and returns the input list with the selected elements marked with True. For
example, mis [1..4] returns

[(1,False),(2,True),(3,False),(4,True)].

Note that our initial specification only returns [2,4]. The correctness of the
algorithm follows from our optimization theorem (see Chapter 4). The linear
property for mis comes from the following observation:

• The argument to eachmax has at most 8 elements, and so does the
second argument of f used to define eachmax. So eachmax costs O(1)
time. Therefore, the auxiliary function mis’ is a linear-time program.

11

• The opts in the body of mis has at most 4 elements, so it costs constant
time to produce the final result after computing mis’ xs.

The function mis’ computes one optimal solution for each class, where classes
correspond to elements of range of h defined as follows.

h :: [α]→ (Bool,Bool)
h x = (p x, p1 x)

Class 0 corresponds to (False,False), Class 1 to (False,True), Class 2 to
(True,False), and Class 3 to (True,True). These classes can be interpreted
as follows.

• Class 0 means that p does not hold and p1 does not hold. This means
that the head of the list is marked and the set of marked elements in
the list is not independent.

• Class 1 means that p does not hold and p1 holds. This means that the
head of the list is not marked and the set of marked elements in the
list is not independent.

• Class 2 means that p holds and p1 does not hold. This means that the
head of the list is marked and the set of marked elements in the list is
independent.

• Class 3 means that p holds and p1 holds. This means that the head
of the list is not marked and the set of marked elements in the list is
independent.

From the function h, we can automatically derive the definition of table.
See Chapter 4 for details.

1.7.3 Remarks

Two remarks are worth making. First, the optimization theorem, which will
be discussed in detail in Chapter 4, plays a significant role in our derivation.
To apply this theorem, the only thing one have to do is to find the property
description in mutumorphic form.

Second, the property description in mutumorphic form can be derived
from a recursive property description by using the calculational strategy we

12

present in Chapter 4. This derivation utilizes tupling and fusion transforma-
tions, which are nothing very special and for which a wealth of calculation
techniques have been developed [Jeu93, BdM96]. Our derivation is thus sur-
prisingly simple and powerful.

1.8 Organization of this thesis

The organization of rest part of this thesis is as follows. In Chapter 2, we
briefly describe the basic concepts of program calculation such as fusion and
tupling, and explain the notation used in this thesis. In Chapter 3, we for-
mally define maximum marking problems. In Chapter 4, we propose the
optimization theorem and our calculation framework. In Chapter 6 we show
the system which generates a practical linear time algorithms for maximum
marking problem, and show its effectiveness by generating linear time al-
gorithms for several examples. In Chapter 7, we discuss related work. In
Chapter 8, we make our concluding remarks.

13

Chapter 2

Preliminaries

In this chapter we briefly review the notational conventions and some basic
concepts of program calculation [Bir87, MFP91, BdM96] used in this thesis.

2.1 Recursive Data Types

To simplify the presentation and proof of the optimization theorem in Chap-
ter 4, we restrict ourselves to considering polynomial data types. And to
avoid categorical notations, we describe polynomial data types in the follow-
ing form:

D α = C1 (α,D1, . . . , Dn1)
| C2 (α,D1, . . . , Dn2)
| · · ·
| Ck (α,D1, . . . , Dnk

)

Here Di’s denote Dα, and Ci’s are called data constructors applying to an
element of type α and a bounded number of recursive components. Though
seemly restricted, these polynomial data types are powerful enough to cover
our commonly used data types, such as lists, binary trees, rooted trees
[BLW87], and series-parallel graphs [TNS82]. Moreover, other data types
like the rose trees, a kind of regular data type defined by

RTree α = Node α [RTree α],

can be encoded into one of these polynomial data types. This will be demon-
strated in Chapter 4.

14

For each data constructor Ci, we define Fi by

Fi f (e, x1, . . . , xni
) = (e, f x1, . . . , f xni

).

2.2 Catamorphism

Catamorphisms , one of the most important concepts in program calculation
[MFP91, SF93, BdM96], form a class of important recursive functions over
a given data type. They are the functions that promote through the data
constructors.

For example, for the type of lists, given e and ⊕ , there exists a unique
catamorphism cata satisfying the following equations:

cata [] = e
cata (x : xs) = x⊕ (cata xs)

In essence, this solution is a relabeling: it replaces every occurrence of [] with
e and every occurrence of : with ⊕ in the cons list. Because of the uniqueness
property of catamorphisms (i.e., for this example e and ⊕ uniquely deter-
mines a catamorphism over cons lists), we usually denote this catamorphism
as cata = ([e, (⊕)]).

Definition 1 (Catamorphism) A catamorphism over a recursive data
type D is characterized by

f = ([φ1, . . . , φk])D ≡ f ◦ Ci = φi ◦ Fi f (i = 1, . . . , k)

If it is clear from the context, we usually omit the subscript D in
([φ1, . . . , φk])D. 2

Catamorphisms play an important role in program transformation (program
calculation) because they satisfy a number of nice calculational properties in
which the fusion theorem is of greatest importance:

Theorem 1 (Fusion)

f ◦ ([φ1, . . . , φk])D = ([ψ1, . . . , ψk])D

provided that for every i with 1 ≤ i ≤ k

f ◦ φi = ψi ◦ Fi f.

2

15

The fusion theorem gives the condition that has to be satisfied in order to pro-
mote (fuse) a function into a catamorphism to obtain a new catamorphism.
It actually provides a constructive but powerful mechanism for deriving a
“bigger” catamorphism from a program in a compositional style, a typical
style for functional programming. When applying the fusion theorem, we
may do generalization, which is an operation substituting a new function for
the target part of the fusion transformation.

2.3 Mutumorphisms

Mutumorphisms, generalizations of catamorphisms to mutually defined func-
tions, are defined as follows [Fok89, Fok92, HITT97].

Definition 2 (Mutumorphisms) Functions f1, f2, . . ., fn are said to be
mutumorphisms on a recursive data type D α if each function fi is defined
mutually by

fi ◦ Cj = φij ◦ Fj (f1 4 f2 4 . . . 4 fn)

for j ∈ {1, 2, . . . , k}. 2

Note that f1 4 f2 4 . . . 4 fn represents a function defined as follows:

(f1 4 f2 4 . . . 4 fn) x = (f1 x, f2 x, . . . , fn x)

It is known that mutumorphisms can be turned into a single catamorphism
by the tupling transformation [Fok89, Fok92, HITT97].

Theorem 2 (Mutu Tupling) If f1, f2, . . . , fn are mutumorphisms like
those in Definition 2, then

f1 4 f2 4 . . . 4 fn = ([φ1, φ2, . . . , φk])D

where φi = φ1i 4 . . . 4 φni for i = 1, . . . , k. 2

2.4 Notation

Throughout this thesis, we use notation like the functional programming
language Haskell [PJH99]. Here, we explain about the list comprehension
and the definition of function foldl used in, e.g., Figure 4.1.

16

• List comprehension

List comprehension is a notation for describing a list, which is based
on the notation of set used in mathematics. List comprehension takes
the following form:

[〈Expression〉 | 〈Qualifier〉, . . . , 〈Qualifier〉]

〈Qualifier〉 is an expression of boolean or a generator. Generator takes
the following form:

〈Variable〉 ← 〈List〉
(〈Variable〉, 〈Variable〉)← 〈List of tuples〉
(〈Variable〉, 〈Variable〉, 〈Variable〉)← 〈List of triples〉
· · ·

For example, [x | x← [1, 2, 3, 4], x×x ≤ 10] is an expression using list
comprehension, whose value is a list [1, 2, 3].

• The function foldl
foldl is one of the folding function on lists, which is defined as follows:

foldl :: (α→ β → α)→ α→ [β]→ α
foldl f a [] = a
foldl f a (x : xs) = foldl f (f a x) xs

17

Chapter 3

Maximum Marking Problems

In this chapter we define the maximum marking problems and clarify the
condition that weight should satisfy. At the last of this chapter we clarify
the limitations of the existing solutions.

3.1 A Formal Definition

A maximum marking problem can be rephrased as follows. Given a data
structure x, the task is to find a way to mark some elements in x such that
the marked data structure of x satisfies a certain property p and has the
maximum value with respect to certain weight function w. This means that
no other marking of x satisfying p can produce a larger value with respect
to w. A straightforward solution, whose complexity is exponential in the
number of elements in x, is as follows:

mmp w p ms =↑w / ◦ filter p ◦ gen ms

We use gen ms to generate all possible markings of input data x using a set
(list) of marks ms, and from those which satisfy the property p we use ↑w /
to select one whose value with respect to the weight function w is maximum.
Here we assume that there is at least one possible markings of input data x
satisfying the property p.

18

3.1.1 Marking

Here we describe about marking. We use the following function mark as
marking function:

mark :: [Mark]→ α→ [α∗]
mark ms x = [(x,m) |m← ms]

This function mark takes as its first argument a list ms of all the marks used
for marking and as its second argument an element x, and returns a list of
all the possible marking of the element x. Mark is the type of marks. In
the simplest case, Mark = Bool. This means that there are two possibilities:
mark or unmark. We mean that if the element x is marked with True then it
is marked, and if marked with False then it is unmarked. In another case, for
example, Mark = {Red,Green,Yellow}. This is used for the coloring problem
in Chapter 4. When Mark consists of more than two marks, then we call the
problem ”maximum multi-marking problem” in particular.

We use the following function kind to get the mark from a marked element,
which is defined as follows:

kind :: α∗ → Mark
kind (x,m) = m.

We explain some of our notation for marking. For a data type of α, we use
α∗ to extend α with marking information. It can be defined more concretely
by

α∗ = (α,Mark)

where a boolean value indicates whether or not the element of type α is
marked. Accordingly, we use a∗, b∗, . . . , x∗ to denote variables of the type α∗

or the type D α∗ (i.e., D (α∗)).
The function gen, exhaustively enumerating all the possible ways of mark-

19

ing every element, can be recursively defined by

gen :: [Mark]→ D α→ [D α∗]
gen ms = ([η1, . . . , ηk])

where
ηi (e, xs∗1, . . . , xs

∗
ni

) =
[Ci (e∗, x∗1, . . . , x

∗
ni

) |
e∗ ← mark ms e,
x∗1 ← xs∗1,
x∗2 ← xs∗2,

...
x∗ni
← xs∗ni

] (i = 1 . . . k)

So much for the specification of mmp, with which we can define various
maximum marking problems. For example, the mis problem in Section 1.7
can be specified by

mis =↑wsum / ◦ filter p ◦ gen [True,False]

where p is the description of the “independent” property specified in Section
1.7, and the function wsum computes the sum of weights of marked elements
in a data structure:

wsum :: D α∗ →Weight
wsum = ([φ1, . . . , φk])

where
φi (e∗, w1, . . . , wni

) =
(if marked e∗ then weight e∗ else 0) +
w1 + · · ·+ wni

where marked is a function which takes as its argument an element e∗ and
checks whether or not e∗ is marked.

marked :: α∗ → Bool
marked (e,m) = m.

This function is only used for the case that Mark = Bool.

3.1.2 Weight

Here we clarify the condition that weight should satisfy. In maximum mark-
ing problem, what we want is a marked data that has maximum value with

20

respect to weight function w:

w :: D α∗ →Weight.

As we describe in Chapter 1, a maximum marked data is taken by the fol-
lowing function:

↑w / :: [D α∗]→ D α∗

where ↑f is defined by

a ↑f b = b, if f a ≤ f b
= a, otherwise.

So, the type Weight has to have the relation ≤. In order to guarantee that
the obtained result by the function ↑w has the maximum value with respect
to the weight function w, we require that ≤ should be total order on Weight.
So, for example, weight can be integer, real number, natural number, and so
on, with the usual total order ≤ on each set.

3.1.3 Maximum Weightsum Problem

Consider the following simple case of maximum marking problem:

mmp wsum p [True,False].

Here, wsum is a weight function that computes the sum of elements of marked
True. We call this kind of problem ”maximum weightsum problem”, which
is well studied in [SHTO00]. In the following, we use the function mws to
represent the above form:

mws p = mmp wsum p [True,False].

3.2 Examples

Here we show several examples of maximum marking problems, including
the problems we showed in Chapter 1 and an example of maximum multi-
marking problem called the coloring problem [SHT01].

21

3.2.1 Tree Knapsack Problem

The input of this problem is a binary tree, which is defined as follows:

Tree α ::= Leaf α | Bin (α,Tree α,Tree α)

The property which should be satisfied can be described by

p t = weightsum t ≤ C ∧ tc t

where weightsum takes as its argument a marked tree t and simply returns
the sum of weight of selected items, and tc also takes as its argument a
marked tree t and checks whether marked elements are connected together.
Selection is represented by two marks, True and False. Weight function w
should computes the sum of value of selected items. By using these functions,
the tree knapsack problem can be specified by

↑w / ◦ filter p ◦ gen [True,False].

Detail description of these functions are in Chapter 5.

3.2.2 r-MSS Problem

Input of r-MSS problem is a sequence of numbers. We represent a sequence
by a list. Property which should be satisfied is that selected elements form up
to r connected subsequences in the input sequence. By letting the property
p, he r-MSS problem can be specified as follows:

↑w / ◦ filter p ◦ gen [True,False].

Here, the weight function w only computes the sum of selected elements.
Detail description of these functions are in Chapter 5.

3.2.3 Party Planning Problem

The input of the party planning problem is a general tree, so we can use the
following recursive (regular) data structure.

Org α ::= Leader α [Org α]

This does not belong to recursive data types we defined in Section 2.1, so
data type conversion is needed (See section 4). The property which should be

22

satisfied is that any two selected elements does not have direct parent-child
relationship. By letting the property p, the party planning problem can be
specified as follows:

↑w / ◦ filter p ◦ gen [True,False].

Here, the weight function w only computes the sum of selected elements.
Detail description of these functions are in Chapter 4.

3.2.4 Coloring Problem

Here we show an example of maximum multi-marking problems, the coloring
problem. Suppose there are three marks: Red, Blue, and Yellow. The prob-
lem is to find a way of marking all the elements such that each sort of mark
does not appear continuously, and that the sum of the elements marked in
Red minus the sum of the elements marked in Blue is maximum.

This problem can be specified as follows:

coloring = ↑w / ◦ filter indep ◦ gen [Red,Green,Yellow]

indep xs = indep′ xs 0
indep′ [] color = True
indep′ (x : xs) color = kind x 6= color ∧ indep′ xs (kind x)

w = + / ◦ map f
where f e∗ = case kind e∗ of

Red→ weight e∗

Blue→ −(weight e∗)
Yellow→ 0.

Of course, this definition is terribly inefficient taking exponential time,
though it is straightforward. In the following chapters, we show that they
can be automatically transformed to an efficient linear one.

3.3 Existing Solution — Borie’s Approach

The maximum marking problems have many instances in graph algorithms.
Bern et al. showed that many graph problems — such as the minimum ver-
tex cover problem, the maximum independent set problem, the maximum

23

matching problem, and the traveling salesman problem — can be described
by mws, and, more interestingly, that they can be solved in linear time on
decomposable graphs [BLW87]. Basing their work on Bern et al.’s and on
Courcelle’s [Cou90b], Borie et al. proposed a method for automatically con-
structing linear-time algorithms that solve the maximum-weightsum prob-
lems [BPT92].

The main idea is to restrict the property p to be described in terms of
a small canonical set of primitive predicates (such as the incident predicate
Inc (v, e)) or a combination of them by logical operators (∧, ∨, and ¬) and
(either first-order or second-order) quantifiers (∀ and ∃). For example, the
property p for the maximum independent set problem is described by

p = ∀v1 ∀v2 ¬ Adj (v1, v2)
Adj (v1, v2) = ∃e1 (Inc (v1, e1) ∧ Inc (v2, e1))

∧ ¬ (v1 = v2).

With this restriction, it is possible to automatically construct a linear-time
algorithm for mws p from the predicative structure of p.

Though attractive in theory, a linear-time algorithm needs to create a
huge table, and this prevents these algorithms from actually being used
[BLW87, BPT92, APT00]. The table created for the maximum independent
set problem, for instance, contains more than 2(2142) entries. The functional
approach we propose can reduce this number to 8 (See Figure 1.1).

24

Chapter 4

Derivation of Efficient
Algorithms

This chapter focuses on a formal study of our functional approach to solving
the maximum marking problems, in which approach our main theorem, the
optimization theorem, plays a significant role. It not only clarifies a sufficient
condition for the existence of linear-time algorithms, but also gives a calcu-
lation rule for the construction of such algorithms. As will be seen later,
the key points of our calculation are the functional (rather than predicative)
structure of property descriptions, and the good use made of program trans-
formation such as fusion and tupling [HITT97, Fok92, Fok89]. We begin here
by giving in Lemma 1 a sufficient condition under which efficient linear-time
algorithms are guaranteed to exist. Then we use mutumorphisms to formal-
ize in Lemma 3 the class of problems we can solve in linear time. Finally, we
summarize the two lemmas in our optimization theorem.

4.1 A Sufficient Condition about Property

It is obvious that not all optimization problems specified by

spec :: D α→ D α∗

spec = mws p

can be solved in linear time. Our first result gives a sufficient condition for
p in the form of the composition of a function and a catamorphism.

25

opt accept φ1 . . . φk x =
getdata (↑snd / [(c, w, r∗) | (c, w, r∗)← ([ψ1, . . . , ψk])D x, accept c])
where ψi (e, cand1, . . . , candni) =

eachmax [(φi (e∗, c1, . . . , cni),
(if marked e∗ then weight e∗ else 0) + w1 + . . .+ wni ,
Ci (e∗, r∗1, . . . , r

∗
ni

)) |
e∗ ← [mark e, unmark e],
(c1, w1, r

∗
1)← cand1, · · · , (cni , wni , r

∗
ni

)← candni]
(i = 1, . . . , k)

Figure 4.1: Optimization function opt.

Lemma 1 (Optimization Lemma) Let spec be defined by

spec :: D α→ D α∗

spec = mws (accept ◦ ([φ1, . . . , φk])).

If the domain of the predicate accept is finite, then spec can be solved in linear
time. 2

To prove the lemma, we define an optimization function opt in Figure 4.1.
We will show that opt solves spec correctly and that is computable in linear
time. In Figure 4.1, getdata is a function which takes as its argument a triple
and returns the third element.

getdata (c, w, r∗) = r∗

Correctness

Here we show how the right-hand side of

spec x = opt accept φ1 . . . φk x

26

is transformed into the left-hand side. In the transformation rules we use the
auxiliary functions ψ′

i (i = 1, . . . , k) defined by

ψ′
i (e, cand1, . . . , candni

) =
[(φi (e∗, c1, . . . , cni

),
(if marked e∗ then weight e∗ else 0)
+ w1 + . . .+ wni

,
Ci (e∗, r∗1, . . . , r

∗
ni

)) |
e∗ ← [mark e, unmark e],
(c1, w1, r

∗
1)← cand1, · · · ,

(cni
, wni

, r∗ni
)← candni

].

27

opt accept φ1 . . . φk x
= { unfold opt }

getdata (↑snd / [(c, w, r∗)
| (c, w, r∗)← ([ψ1, . . . , ψk]) x,
accept c])

= { ([ψ1, . . . , ψk]) = eachmax ◦ ([ψ
′
1, . . . , ψ

′
k]) }

getdata (↑snd /
[(c, w, r∗) | (c, w, r∗)← eachmax (([ψ

′
1, . . . , ψ

′
k]) x),

accept c])
= { filter (accept ◦ fst) ◦ eachmax =

eachmax ◦ filter (accept ◦ fst) }
getdata (↑snd / (eachmax

[(c, w, r∗) | (c, w, r∗)← ([ψ
′
1, . . . , ψ

′
k]) x,

accept c]))
= { ↑snd / ◦ eachmax =↑snd / }

getdata (↑snd / (eachmax
[(c, w, r∗) | (c, w, r∗)← ([ψ

′
1, . . . , ψ

′
k]) x,

accept c]))
= { c = ([φ1, . . . , φk]) r∗ }

getdata (↑snd /
[(c, w, r∗) | (c, w, r∗)← ([ψ

′
1, . . . , ψ

′
k]) x,

accept (([φ1, . . . , φk]) r
∗)])

= { getdata ◦ ↑snd / =↑wsum / ◦map getdata }
↑wsum / [r∗ | r∗ ← (map getdata ◦ ([ψ

′
1, . . . , ψ

′
k])) x,

accept (([φ1, . . . , φk]) r
∗)]

= { ([η1, . . . , ηk]) = map getdata ◦ ([ψ
′
1, . . . , ψ

′
k]) }

↑wsum / [r∗ | r∗ ← ([η1, . . . , ηk]) x,
accept (([φ1, . . . , φk]) r

∗)]
= { fold mws }

mws (accept ◦ ([φ1, . . . , φk])) x
= { fold spec }

spec x

The first transformation rule is simply an unfolding of opt.
The second transformation rule is

([ψ1, . . . , ψk]) = eachmax ◦ ([ψ
′

1, . . . , ψ
′

k]).

28

The relation between ψi and ψ′
i is as follows:

ψi = eachmax ◦ ψ′
i

The function ([ψ1, . . . , ψk]) applies the function eachmax to the list of can-
didates at each stage. The function eachmax ◦ ([ψ

′
1, . . . , ψ

′
k]), however, first

creates all the markings of input data and corresponding weights and classes.
Then it applies the function eachmax. These two functions compute the same
candidate solutions because the function eachmax takes a list which contains
candidate solutions and returns a list which consists of the rightmost optimal
solution for each class in the input list, preserving the order, and the function
eachmax is idempotent (i.e., eachmax ◦ eachmax = eachmax).

The third transformation rule

filter (accept ◦ fst) ◦ eachmax =
eachmax ◦ filter (accept ◦ fst)

means the commutativity between filter and eachmax functions, where filter
is the abbreviation of

λp. λxs. [x |x← xs, p x].

The function filter (accept ◦ fst) ◦ eachmax first applies the function eachmax
and then filters. The function eachmax ◦ filter (accept ◦ fst) first filters and
then applies the function eachmax. These two functions compute the same
result because the predicate (accept ◦ fst) is concerned only with the classes
and because the functions filter and eachmax preserve the order.

The fourth transformation rule is

↑snd / ◦ eachmax =↑snd /.

This equation holds because ↑snd / returns the rightmost optimal solution,
and eachmax returns a list which consists of the rightmost optimal solution
for each class in the input list, preserving the order.

The fifth transformation rule is

c = ([φ1, . . . , φk]) r
∗.

This means that the class to which r∗ belongs is c, which can be shown by
induction.

29

The sixth transformation rule is

getdata ◦ ↑snd / =↑wsum / ◦map getdata.

This holds because the second element is the weightsum of the third element,
which can be shown by induction.

The seventh transformation rule

([η1, . . . , ηk]) = map getdata ◦ ([ψ
′

1, . . . , ψ
′

k])

follows from Theorem 1.
The eighth and ninth transformation rules are simply the foldings of mws

and spec. 2

Linearity

Here we show that the function opt is linear.

opt accept φ1 . . . φk x =
getdata (↑snd /

[(c, w, r∗) | (c, w, r∗)← ([ψ1, . . . , ψk])D x, accept c])

The important observation is that the number of elements in the list
([ψ1, . . . , ψk])D x is bounded by the number of classes1 (i.e., the number of
elements in the domain of accept or the range of the catamorphism) because
eachmax returns a list whose length is bounded by the number of classes.
Therefore, if ([ψ1, . . . , ψk])D x can be computed in linear time, so can opt.

To prove that ([ψ1, . . . , ψk])D is a linear-time algorithm, it is suffice to show
that ψi e cand1 . . . candni

can be computed in constant time. Taking the fact
that φi can be computed in O(1) time because the size of its argument is
independent of the input, we can see that the construction of each triple
(c, w, r∗) (i.e., each element consumed later by eachmax) can be computed
in O(1) time because c can be obtained in O(1) time by φi, w by performing
the + operation ni times, and r∗ simply by combining e∗, r∗1, . . . , r

∗
ni

. Here
ni is bounded by

N = max {ni | 1 ≤ i ≤ k}.
1From the condition that the domain of accept is finite, we know the range of the

catamorphism ([φ1, . . . , φk]) is finite. As seen in Section 1.7, this catamorphism projects
the input to this finite range, whose elements are called classes [BLW87].

30

Moreover, exactly (2×|cand1|×. . .×|candni
|) triples of (c, w, r) are generated,

and this number is bounded by the constant 2CN , where C is the number of
classes. Therefore, the complexity of ψi e cand1 . . . candni

is O(1). Though
the size of the bound increases exponentially with N , in many well-used data
types, such as lists and binary trees, N is small (perhaps one or two). 2

Remarks

This lemma was inspired by Bern et al.’s work on decomposable graphs
[BLW87], where a similar condition on decomposable graphs was given. We
generalize the idea from decomposable graphs2 to generic recursive data
types. Moreover, we give a concrete linear time algorithm using the opti-
mization function opt in Figure 4.1.

In the optimization lemma, we give the optimization function opt to com-
pute an optimal solution. It is worth noting that by slightly changing the
definition of the optimization function opt, we can also do recognition and
enumeration in linear time. Recognition means recognizing whether or not
a solution satisfying the property description exists, and enumeration means
counting the number of solutions satisfying the property description [BPT92].

4.2 A Sufficient Condition about Weight

Function

In the above, we only consider the case that marks are True and False and
the weight function w is wsum, which simply computes the sum of marked
elements. The previous work restricted the weight function w to be just
the sum of weight of marked elements [Bir00, SHTO00, BLW87, BPT92].
As seen in the coloring problem in Chapter 3, we often need to use a more
general weight function. Here, we generalize Lemma 1 with respect to marks
and weight function. First, we allow any finite number of elements that are
different each other as marks. Second, we allow a class of weight functions.
We define the following general form, a kind of list homomorphism [Bir87],
which we call homomorphic weight function.

2Decomposable graphs do not allow the addition of a new element when gluing smaller
graphs.

31

4.2.1 Homomorphic Weight Function

Definition 3 (Homomorphic Weight Function) A function w is a ho-
momorphic weight function if it is defined as follows:

w :: D α∗ →Weight
w = plus ◦map f

where plus = ([φ1, . . . , φk])
φi (e, x1, . . . , xni

) = e⊕ x1 ⊕ · · · ⊕ xni

where ⊕ is an associative binary operator which can be computed in O(1)
time, which has an identity element ι⊕, and which satisfies the condition
called distributivity over ↑id:

(↑id / xs) ⊕ (↑id / ys) = ↑id /[x⊕ y | x ∈ xs ∧ y ∈ ys].
2

A homomorphic weight function allows any O(1) computation f over
each marked element and a more general operation ⊕ rather than just +
for “summing up”. This enables us to deal with the weight function for the
coloring problem in Chapter 3.

The functionmap appeared in the definition of homomorphic weight func-
tion is defined as follows:

map :: (α→ β)→ D α→ D β
map f = ([φ1, . . . , φk])

where φi (e, x1, . . . , xni
) = Ci (f e, x1, . . . , xni

)

This is not the map function map on lists but the map function on D α.
This is a little confusing, but we use the same name since we think it is clear
from context.

4.2.2 Generalized Optimization Lemma

Here we generalize Lemma 1 with respect to marks and weight function.

Lemma 2 (Generalized Optimization Lemma) Let spec be defined by

spec :: D α→ D α∗

spec = mmp w (accept ◦ ([φ1, . . . , φk])) ms.

If the domain of the predicate accept is finite, w is a homomorphic weight
function, and ms is a list of finite number of marks, then spec can be solved
in linear time. 2

32

opt (f,⊕, ι⊕) accept φ1 . . . φk ms x =
getdata (↑snd / [(c, w, r∗) | (c, w, r∗)← ([ψ1, . . . , ψk])D x, accept c])
where ψi (e, cand1, . . . , candni) =

eachmax [(φi (e∗, c1, . . . , cni),
f e∗ ⊕ w1 ⊕ . . .⊕ wni ,
Ci (e∗, r∗1, . . . , r

∗
ni

)) |
e∗ ← mark ms e,
(c1, w1, r

∗
1)← cand1, · · · , (cni , wni , r

∗
ni

)← candni]
(i = 1, . . . , k)

Figure 4.2: Generalized optimization function opt

This lemma allows use of any finite number of marks and any homomor-
phic weight function. To prove the lemma, we define a generalized optimiza-
tion function opt in Figure 4.2. The following equation similar to one in the
proof of Lemma 1 holds:

spec x = opt (f,⊕, ι⊕) accept φ1 . . . φk ms x

where ⊕ and f appear in the definition of w:

w :: D α∗ →Weight
w = plus ◦map f

where plus = ([φ1, . . . , φk])
φi (e, x1, . . . , xni

) = e⊕ x1 ⊕ · · · ⊕ xni

We omit the proof since correctness and linearity can be shown in the same
way as in proof of Lemma 1. In the following, we use the name opt for
indicating the function opt in Figure 4.2.

4.3 Decomposition Lemma

To apply the optimization lemma, we need to represent the property descrip-
tion p as accept ◦ ([φ1, . . . , φk]), where the domain of accept is finite.

33

4.3.1 Property with Boolean Functions

The following lemma gives a method for transforming the property descrip-
tion p into the above form when p is defined using mutumorphisms.

Lemma 3 (Decomposition Lemma) If the property description p0 ::
D α∗ → Bool can be defined as mutumorphisms with other property de-
scriptions pi :: D α∗ → Bool for i = 1, . . . , n, then p0 can be decomposed
into

p0 = accept ◦ ([φ1, . . . , φk]),

where the domain of accept is finite. 2

Proof. To prove the lemma, we suppose that mutumorphisms p0, p1, . . . , pn

are defined as follows. For each i ∈ {0, 1, . . . , n} and each j ∈ {0, 1, . . . , k},

pi ◦ Cj = φij ◦ Fj (p0 4 p1 4 · · · 4 pn).

By the mutu tupling theorem, we have

p0 4 p1 4 . . . 4 pn = ([φ1, . . . , φk])D (4.1)

where
φi = φ0i 4 φ1i 4 . . . 4 φni (i = 1, . . . , k).

By defining
accept (x0, x1, . . . , xn) = x0,

we obtain
p0 = accept ◦ ([φ1, . . . , φk])D.

Next we show that the domain of accept, i.e., the range of ([φ1, . . . , φk])D,
is finite. Functions p0, p1, . . . , pn have ranges which consist of two elements,
True and False. So, from equation (4.1), the number of elements in the
range of ([φ1, . . . , φk])D is 2n+1, which is a finite number. This means that the
domain of accept is finite. 2

4.3.2 Property with Finite-range Functions

It is easy to see that property can be described using mutumorphisms which
consist of functions whose range is finite.

34

4.4 The Main Theorem

Combining the above two lemmas, we obtain the optimization theorem.

Theorem 3 (Optimization Theorem)
The maximum marking problem specified by

spec :: D α→ D α∗

spec = mmp w p0 ms

can be solved in linear time if the property description p0 :: D α∗ → Bool can
be defined as mutumorphisms with other property descriptions pi :: D α∗ →
Bool for i = 1, . . . , n, w is a homomorphic weight function, and ms is a list
of finite number of marks. 2

This theorem provides a friendly interface for the derivation of efficient
linear-time algorithms solving the maximum marking problems. When the
property description is defined as mutumorphisms which consist of n property
descriptions, a derived catamorphism will have range which has 2n elements.
In many cases, property description p can be easily described as mutumor-
phisms which consist of a small number of property descriptions (two to four
for examples in this thesis). For example, the party planning problem is de-
scribed with mutumorphisms which consist of only two property descriptions.
This means that the linear-time algorithms obtained are practical.

To see how the theorem works, recall the mis problem in Section 1.7. The
property description p is defined with p1 in the following mutumorphic form:

p [x] = True
p (x : xs) = if marked x then p1 xs ∧ p xs else p xs

p1 [x] = not (marked x)
p1 (x : xs) = not (marked x)

It follows from the optimization theorem that an efficient linear-time algo-
rithm solving the mis problem can be derived automatically.

It is easy to extend lemma 3 and theorem 3 to allow the property descrip-
tion p0 to be defined as mutumorphisms with other functions whose ranges
are finite.

35

4.5 Extension of property

The property description p for the coloring problem can be naturally specified
as follows:

indep xs = indep′ xs Neutral
indep′ [] color = True
indep′ (x : xs) color = kind x 6= color ∧ indep′ xs (kind x).

But this is not in a required mutumorphic form such that the rule in Sasano et
al. [SHTO00] can be applied, because indep′ has an additional accumulating
parameter color. Here, Neutral is used as the initial value of the accumu-
lating parameter, which is different from all the colors used for coloring the
elements. The function kind takes as its argument a marked element and
returns the kind of mark of the element. If we insist on specifying indep in
a mutumorphic form, we would have to instantiate all the possible values of
color used by indep′, and could reach the following complicated definition:

indep [] = True
indep (x : xs) = case kind x of

Red→ indepR xs
Blue→ indepB xs
Yellow→ indepY xs

indepR [] = True
indepR (x : xs) = case kind x of

Red→ False
Blue→ indepB xs
Yellow→ indepY xs

indepB [] = True
indepB (x : xs) = case kind x of

Red→ indepR xs
Blue→ False
Yellow→ indepY xs

indepY [] = True
indepY (x : xs) = case kind x of

Red→ indepR xs
Blue→ indepB xs
Yellow→ False.

36

In fact, this instantiation not only leads to a complicated definition, but also
makes the generated program less efficient than that generated by Theorem
3.

For the property p which is to specify the feasible markings with multiple
kinds of marks, the existing approach [SHTO00] (as seen in the definition of
indep in Chapter 3) only allows p to be defined in a mutumorphic form with
several other functions, say p1, . . . , pn, whose ranges are finite.

p [] = e
p (x : xs) = φ x (p xs, p1 xs, . . . , pn xs)

...
pi [] = ei

pi (x : xs) = φi x (p xs, p1 xs, . . . , pn xs)
...

If p is defined in the mutumorphic form, by applying the tupling transforma-
tion [Fok92, HITT97], we can always come up with the following definition
for p, a composition of a project function with a foldr:

p = fst ◦ foldr ψ e′

where ψ x es = (φ x es, φ1 x es, . . . , φn x es)
e′ = (e, e1, . . . , en).

4.5.1 Finite Accumulative Property

To specify a history-sensitive property, we often want to use an accumulating
parameter. So we extend the above p to a composition of a function with a
foldrh, a higher order version of foldr, which is defined as follows:

foldrh (φ1, φ2) δ [] e = φ1 e
foldrh (φ1, φ2) δ (x : xs) e = φ2 x e (foldrh (φ1, φ2) δ xs (δ x e)).

Using this function foldrh, we define the following form, which we call finite
accumulative property.

Definition 4 (Finite Accumulative Property) A property p is a finite
accumulative property if it is defined as follows:

p :: [α∗]→ Bool
p xs = g (foldrh (φ1, φ2) δ xs e0)

where the domain of g and range of δ is finite.

37

Though we only consider the property with an accumulating parameter
on lists, it can be extended to any polynomial data type D α.

4.5.2 Theorem

Now we propose theorem for property description with an accumulating pa-
rameter.

Theorem 4 Suppose a specification of a maximum multi-marking problem
is given as

mmp w p ms = ↑w / ◦ filter p ◦ gen ms.

If w is a homomorphic weight function

w = ⊕ / ◦ map f

and p is a finite accumulative property

p xs = g (foldrh (φ1, φ2) δ xs e0),

then the maximum multi-marking problem (mmp w p ms) can be solved by

optacc (f,⊕, ι⊕) (λ(c, e) . g c ∧ e == e0) φ1 φ2 δ ms .

The definition of optacc is given in Figure 4.3.

This theorem has a form similar to Theorem 3 except for using array in
the definition of optacc for efficiency, and it can be proved by induction on
the input list. We omit the detailed proof in this thesis. One remark worth
making is about the cost of the derived program. Assuming that δ and g
have the types

δ :: α∗ → Acc→ Acc
g :: Class→ Bool,

we can conclude that the generated program using optacc can be computed
in O(|Acc| · |Class| · |ms| ·n) time, where n is the length of input list, |ms| is
the number of marks, and |Acc| and |Class| denote the size of the type Acc
and the type Class respectively. That means that our approach is applicable
only when the domain of g and the range of δ is finite. If our approach is
applicable, our generated program is much more efficient than the initial
specification program mmp w p ms, which is exponential.

38

optacc (f,⊕, ι⊕) accept φ1 φ2 δ ms xs =
let opts = foldr ψ2 ψ1 xs
in snd (↑fst / [(w, r∗) | Just (w, r∗)← [opts!i | i← range bnds,

opts!i 6= Nothing, accept i]])
where ψ1 = array bnds [(i, g i) | i← range bnds]

ψ2 x cand = accumArray h Nothing bnds
[((φ2 x

∗ e c, e), (f x∗ ⊕ w, x∗ : r∗))
| x∗ ← mark ms x,
e← acclist,
((c,), Just (w, r∗))←

[(i, cand!i) | i← [(c′, δ x∗ e) | c′ ← classlist],
inRange bnds i,
cand!i 6= Nothing]]

g (c, e) = if (c == φ1 e) then Just (ι⊕, []) else Nothing
h (Just (w1, x1)) (w2, x2) = if w1 > w2 then Just (w1, x1)

else Just (w2, x2)
h Nothing (w, x) = Just (w, x)
bnds = ((head classlist, head acclist), (last classlist, last acclist))

acclist = list of all the values in Acc
classlist = list of all the values in Class

Figure 4.3: Optimization function optacc.

39

An Example

To see how the theorem works, we demonstrate how to derive a linear algo-
rithm for the coloring problem in Chapter 3. Recall that the specification
for the coloring problem has been given in Chapter 3. The weight function
has been written in our required form, and the property indep can be easily
rewritten using foldrh as follows:

indep xs = id (foldrh (φ1, φ2) δ xs 0)
where φ1 e = True

φ2 x e r = kind x 6= e ∧ r
δ x e = kind x.

Now applying the theorem quickly yields a linear time algorithm, whose
program coded in Haskell is given in Figure 4.4. Notice that in this example,
k = 3, |Acc| = 4, and |Class| = 2. Evaluating the expression

> coloring [1,2,3,4,5]

gives the result of

[(1, 1), (2, 3), (3, 1), (4, 3), (5, 1)].

It is worth while to compare the generated algorithms from the two prop-
erty description with and without an accumulating parameter. Consider
the coloring problem with k colors and with certain homomorphic weight
function w. By using property description with an accumulating parameter,
O(k2n) algorithm is obtained because |Acc| = k+1 and |Class| = 2. On the
contrary, by using property description in mutumorphic form without accu-
mulating parameters as described in Chapter 3, O(2kn) algorithm would be
obtained by applying the previous method [SHTO00], if it could deal with
multiple kinds of marks.

4.6 Calculation Strategy

In this section we show how to derive practical linear-time algorithms that
solve the maximum marking problems by applying the optimization theorem.

Specification Specify the property description for a given maximum mark-
ing problem using a recursive function p on a data structure R.

40

coloring = optacc (f, (+), 0) accept phi1 phi2 delta [1,2,3]

acclist = [0..3]

classlist = [False, True]

accept (c,e) = c && e==0

f = \x -> case kind x of

1 -> weight x

2 -> - (weight x)

3 -> 0

phi1 e = True

phi2 x e c = kind x /= e && c

delta x e = kind x

kind (_,m) = m

weight (x,_) = x

---------------(the first half)-----------------------------

Figure 4.4: A linear-time Haskell program for the coloring problem (the first
half).

41

---------------(the second half)----------------------------

optacc (f, oplus, id_oplus) accept phi1 phi2 delta ms xs =

let opts = foldr psi2 psi1 xs

in snd (getmax [(w,r) | Just (w,r) <- [opts!i

| i <- range bnds,

opts!i /= Nothing,

accept i]])

where psi1 = array bnds [(i, g i) | i <- range bnds]

psi2 x cand = accumArray h Nothing bnds

[((phi2 xm e c, e),

(f xm ‘oplus‘ w, xm:r))

| xm <- mark ms x,

e <- acclist,

((c,_),Just (w,r)) <-

[(i,cand!i)

| i <- [(c’,delta xm e)

| c’ <- classlist],

inRange bnds i,

cand!i /= Nothing]]

g (c,e) = if (c == phi1 e) then Just (id_oplus, [])

else Nothing

h (Just (w1,x1)) (w2,x2) = if w1 > w2 then Just (w1,x1)

else Just (w2,x2)

h Nothing (w,x) = Just (w,x)

bnds = ((head classlist,head acclist),

(last classlist,last acclist))

getmax [] = error "No solution."

getmax xs = foldr1 f xs

where f (w1,cand1) (w2,cand2)

= if w1>w2 then (w1,cand1) else (w2,cand2)

Figure 4.5: A linear-time Haskell program for the coloring problem (the
second half).

42

Step 1 If R is not a polynomial data type, find a polynomial data structure
D into which R can be encoded, and then transform the property de-
scription p on R into p′ on D. If the data structure R is a polynomial
data structure, then do nothing. That is, let p′ = p and D = R.

Step 2 Derive p′ in terms of mutumorphisms which consist of several prop-
erty descriptions p′0, p

′
1, . . . , p

′
n on D by generalizing some part in p′

and fusing it. If necessary, do tupling transformation to get a cata-
morphism, since a catamorphism must be obtained when applying the
fusion theorem.

Step 3 Apply the optimization theorem to get a linear-time algorithm that
solves the maximum marking problem.

We demonstrate these steps on the party planning problem.

The Party Planning Problem

Specification The inputs in the party planning problem are trees, so we
can use the following recursive (regular) data structure.

Org α ::= Leader α [Org α]

The specification of the problem is

pp :: Org α→ Org α∗

pp = mws p

where the property description p of the party planning problem can be
written as follows:

p :: Org α∗ → Bool
p (Leader v []) = True
p (Leader v (t : ts)) =

not (bothmarked v (getLeader t)) ∧
p t ∧ p (Leader v ts)

If the tree contains only a single node, then the property is satisfied.
Otherwise we check its root v1 with its children one by one to make
certain that both v1 and its child are not marked at the same time, and
then we check other parts of the tree recursively. Here bothmarked v1 v2

43

is used to check whether both v1 and v2 are marked, and getLeader
returns the root of the organization tree:

bothmarked :: α∗ → α∗ → Bool
bothmarked v1 v2 = marked v1 ∧ marked v2

getLeader :: Org α→ α
getLeader (Leader v ts) = v.

Notice that our initial specification is rather straightforward.

Step 1 The data type Org α is regular but non-polynomial data type whose
nodes can have arbitrarily many children. So we transform this data
type Org α into a polynomial data type. In fact, we can represent the
type Org α by the following binary tree structure, called a rooted tree
[BLW87].

RTree α ::= Root α
| Join (RTree α) (RTree α)

The relation between these two data types can be captured by the
following functions.

r2o :: RTree α→ Org α
r2o (Root v) = Leader v []
r2o (Join t1 t2) = let Leader v ts = r2o t2

in Leader v ((r2o t1) : ts)

o2r :: Org α→ RTree α
o2r (Leader v []) = Root v
o2r (Leader v (t : ts)) =

Join (o2r t) (o2r (Leader v ts))

These two functions convert data types in linear time.

Next we transform the property description p on Org α to p′ on RTree α.
Let p′ and getLeader′ be the functions on RTree α which correspond to
p and getLeader on Org α. These functions should satisfy the following
equations.

p′ :: RTree α∗ → Bool
p′ t = p (r2o t)

getLeader′ :: RTree α→ Bool
getLeader′ t = getLeader (r2o t)

44

A simple fusion calculation yields

p′ (Root v) = True
p′ (Join t1 t2) =
not (marked (getLeader′ t1) ∧

marked (getLeader′ t2)) ∧
p′ t1 ∧ p′ t2

getLeader′ (Root v) = v
getLeader′ (Join t1 t2) = getLeader′ t2.

Step 2 To represent p′ using mutumorphisms which consist of only property
descriptions, we generalize the part marked ◦ getLeader′ and let it be
lm′.

lm′ :: RTree α∗ → Bool
lm′ = marked ◦ getLeader′

By a simple fusion calculation we can get

lm′ (Root v) = marked v
lm′ (Join t1 t2) = lm′ t2.

Now we can represent p′ using mutumorphisms which consist of the
following two property descriptions.

p′ (Root v) = True
p′ (Join t1 t2) = not (lm′ t1 ∧ lm′ t2) ∧

p′ t1 ∧ p′ t2
lm′ (Root v) = marked v
lm′ (Join t1 t2) = lm′ t2

Step 3 By applying our optimization theorem, we get the following linear-
time algorithm.

pp = r2o ◦ (opt accept φ1 φ2) ◦ o2r
where
accept (x0, x1) = x0

φ1 v = (True,marked v)
φ2 (a1, b1) (a2, b2) =

(not (b1 ∧ b2) ∧ a1 ∧ a2, b2)

45

So much for the derivation. Note that we can go further to compute φi

statically and store it in a table, though this is not necessary. To do
so, define four classes by

c0 = (False,False)
c1 = (False,True)
c2 = (True,False)
c3 = (True,True)

and simplify the functions accept, φ1, and φ2. We write φ2 as a table.

accept c = (c == c2) ∨ (c == c3)
φ1 v = if marked v then c3 else c2

φ2 c0 c1 c2 c3
c0 c0 c1 c0 c1
c1 c0 c1 c0 c1
c2 c0 c1 c2 c3
c3 c0 c1 c2 c1

46

Chapter 5

Examples

In this chapter, we give more examples, showing that our proposed gener-
ation rule is quite general and powerful. Examples include several kinds of
knapsack problems, scheduling problem, a data mining problem mentioned in
Chapter 1, several problems in the book Algebra of Programming [BdM96].

5.1 Paragraph Formatting Problem

The paragraph formatting problem is the problem of breaking a sequence of
words into lines to form a paragraph. At least one blank space must exist
between any adjacent two words in the same line. Line length, i.e., the
number of characters each line holds, is fixed as m. We want to minimize the
sum of the number of blank spaces in all the lines excluding the last line. We
assume that the input sequence of words is given by a list of words and that a
word is expressed by its length since the spelling of words is not needed. For
example, the sequence of words ”This is a dog. They are cats.” is expressed
as the list [4, 2, 1, 4, 4, 3, 5].

We would like to treat this problem as a multi-marking problem, that is,
to describe this problem in the form

mmp w p ms.

We use three kinds of marks, 1, 2, and 3. So, k = 3. If a word is marked 2,
then it indicates that the word is the last word of the line it belongs to. If a
word is marked 3, then it indicates that the word belongs to the last line. The
other words are marked 1. We make special treatment of the last line in order

47

to exclude the blank spaces when computing the sum of the number of blank
spaces. The property p checks whether a marking represents a valid breaking
or not. We describe the property p by using an accumulating parameter. The
accumulating parameter holds the pair of position pos and mark mk, where
pos represents the last position filled by the previous words in the current
line, and mk represents the kind of mark of the previous word. We define
the property p as follows:

p xs = p′ xs (0, 2)
p′ [] (pos,mk) = mk 6= 1
p′ (x : xs) (pos,mk) =

case mk of
1→ case kind x of

1→ pos+ l x+ 1 ≤ m ∧ p′ xs (pos+ l x+ 1, 1)
2→ pos+ l x+ 1 ≤ m ∧ p′ xs (0, 2)
3→ False

2→ case kind x of
1→ pos+ l x ≤ m ∧ p′ xs (pos+ l x, 1)
2→ pos+ l x ≤ m ∧ p′ xs (0, 2)
3→ pos+ l x ≤ m ∧ p′ xs (pos+ l x, 3)

3→ case kind x of
1→ False
2→ False
3→ pos+ l x+ 1 ≤ m ∧ p′ xs (pos+ l x+ 1, 1),

where we use the function l to compute the length of a word.
Next, we have to describe the weight function w. We want to minimize

the sum of the number of blanks except for the last line. The function white
which returns the sum can be written as follows:

white = +/ ◦map f
where f x = case kind x of

1→ −l x
2→ m− l x
3→ 0.

Using this function, we can define the weight function w as follows:

w x = −(white x).

48

This can be easily transformed into the following form:

w = +/ ◦map f
where f x = case kind x of

1→ l x
2→ −m+ l x
3→ 0.

Now the paragraph formatting problem is written as follows:

mmp w p [1, 2, 3].

By applying the Theorem 4 (by using the rule mmpRule), we can obtain
an O(mn) algorithm where n is the number of words. This complexity is
achieved by the fact that the number of kinds of marks is three, the size of
the accumulating parameter |Acc| is 3(m+ 1), and the size of the function g
(in this case id) |Class| is 2.

5.2 Security Van Problem

The security van problem can be specified as follows [BdM96].

Suppose a bank has a known sequence of deposits and withdrawals.
For security reasons the total amount of cash in the bank should
never exceed some fixed amount N , assumed to be at least as
large as any single transaction. To cope with demand and supply,
a security van can be called upon to deliver funds to the bank or
to take away a surplus. The problem is to compute a schedule
under which the van visits the bank a minimum number of times.

In order to specify this problem as a maximum multi-marking problem, we
consider the security of transactions. A sequence [a1, a2, . . . , an] of transac-
tions is called secure if there is an amount r, indicating the total amount of
cash in the bank at the beginning of the sequence of transactions, such that
each of the sums

r, r + a1, r + a1 + a2, . . . , r + a1 + · · ·+ an

lies between zero and N . For example, taking N = 10, the sequence [3,−5, 6]
is secure because the van can take away or deliver enough cash to make an

49

initial reserve of, for example, 5. Given the constraint that N is no smaller
than any single transaction, every singleton sequence is secure, so a valid
schedule certainly exists.

To formalize the constraint, define

ceiling = ↑+/ / ◦ inits
floor = ↓+/ / ◦ inits

where inits is a function which takes as its argument a list and returns the
list which has all the initial segments including empty list. A sequence x of
transactions is secure if and only if

ceiling x− floor x ≤ N.

Considering this condition, we can define property p in the following way.
We express the time the van visits by marking 1 to a transaction after which
the van visits. Transactions marked 2 represent the other transactions. The
accumulating parameter holds a triple of sum, ceiling, and floor for each
initial segment.

p xs = p′ xs (0, 0, 0)
p′ [] (s, c, f) = True
p′ (x : xs) (s, c, f) =

let (s′, c′, f ′) = (s+ w x, c ↑id s′, f ↓id s′)
in case kind x of

1→ if c′ − f ′ ≤ N then p′ xs (w x, 0 ↑id w x, 0 ↓id w x)
else p′ xs (w x, 0 ↑id w x, 0 ↓id w x)

2→ if c′ − f ′ ≤ N then p′ xs (s′, c′, f ′))
else False

Here, the function w takes as its argument a marked transaction and returns
the amount of it. We want to minimize the number of times the van visits,
so we first define the function times which computes the times the van visits.

times = +/ ◦ map f
where f x = case kind x of

1→ 1
2→ 0

Using this function, we can define the weight function w as follows:

w x = − (times x).

50

This can be easily transformed into the following form:

w = +/ ◦ map f
where f x = case kind x of

1→ −1
2→ 0.

Now the security van problem is written as follows:

mmp w p [True,False].

The weight function w is written in the required form, and the property p
can be easily rewritten into the required form, though we omit the form. By
applying Theorem 4, we obtain O(N3n) algorithm because |Acc| = (N +
1)2(2N + 1), k = 2, and |Class| = 2.

5.3 Knapsack Problem

The knapsack problem [MT90] is a well known combinatorial optimization
problem. There are several problems called knapsack problem such as 0-1
knapsack problem, 0-1 multiple knapsack problem, multidimensional knap-
sack problem, and so on. Here we consider the simplest one, the 0-1 knapsack
problem and derive an efficient linear time algorithm from simple specifica-
tion [SHTO01c].

Input of the 0-1 knapsack problem is a set of items each of which has
weight and value. Output is a feasible selection of items whose value sum
is maximum in all the feasible item selections. A selection is feasible when
sum of weight of selected items does not exceed the given capacity C. We
assume weight of items are integers. Without this assumption, this problem
becomes NP-hard.

5.3.1 Specification

We express an item by pair of weight and value (Weight,Value) and a set of
items by non-empty list [(Weight,Value)]. Knapsack problem is a maximum
marking problem where weight function w computes sum of value of marked
(selected) items and property knap checks that sum of weight of marked
items does not exceed the given capacity C.

51

knap xs = weightsum xs ≤ C

The argument of knap is a list of items, each of which is accompanied by
a mark which indicates whether the item is selected or not.

5.3.2 Property by Finite Mutumorphisms

In order to express property knap as finite mutumorphisms on non-empty
list, we introduce the following function cut.

cut :: Weight→Weight
cut w = if w ≤ C then w else C + 1

This function cut takes weight w as its argument and returns C + 1 if w is
greater than C and returns w otherwise. By using this function cut, we can
express property knap as follows:

knap xs = sumw xs ≤ C
sumw [x] = cut (if marked x then weight x

else 0)
sumw (x : xs) =

cut ((if marked x then weight x
else 0) + sumw xs)

The function marked checks whether the element is marked or not.

5.3.3 Property by Finite Accumulative Property

We express selection by marking 1 to selected items and 2 to the others. The
property for 0-1 knapsack problem can be described as follows. The accumu-
lating parameter holds a value from 0 to C, which indicates the remaining
capacity of knapsack.

knap xs = knap′ xs C
knap′ [] e = True
knap′ (x : xs) e = case kind x of

1→ if e ≥ w x then knap′ xs (e− w x) else False
2→ knap′ xs e

Here, the function w returns the weight of the item.

52

5.3.4 Weight function

We want to maximize the value of selected items, so we can define the weight
function w as follows:

w = +/ ◦map f
where f x = case kind x of

1→ value x
2→ 0.

Here, the function value returns the value of the item.
Now the 0-1 knapsack problem is written as follows:

mmp w knap [True,False].

The weight function w is written in the required form, and the property knap
can be easily rewritten into the required form, though we omit the form.

5.3.5 Derivation by Theorem 4

By applying Theorem 4, we obtain O(Cn) algorithm because |Acc| = C + 1,
k = 2, and |Class| = 2.

5.3.6 Derivation by Theorem 3

Since the range of the property knap is {True,False} and the range of the
function sumw is {0, 1, . . . , C + 1}, the functions knap, sumw constitute mu-
tumorphisms on non-empty lists. So, by applying Theorem 3, we get the
following algorithm:

knapsack x = opt accept φ1 φ2 x
where
accept x = x ≤ C
φ1 x = cut (if marked x then weight x

else 0)
φ2 (x, y) = cut ((if marked x then

weight x else 0) + y)

The complexity of this algorithm is O(Cn) where n is the number of
items.

53

5.4 Knapsack Problem on List

In the previous subsection, we considered the ordinary knapsack problem,
which does not have structure on items. In this section, we consider a variant
of knapsack problem, where items have list structure. Here as an example
we consider an additional condition that we cannot select adjacent items.

5.4.1 Specification

The condition that adjacent items cannot be selected is described as follows:

indep [x] = True
indep (x : xs) =

if marked x then
not (marked (hd xs)) ∧ indep xs

else indep xs
hd [x] = x
hd (x : xs) = x

When the item list is a singleton [x], since the number of items is one and
thus adjacent items cannot be selected, indep returns True. When the item
list is (x : xs), there are more than two items exist. When the top item x is
selected, from the remaining items xs we should select items independently
and must not select the head item of xs. The function hd takes a non-empty
list as its argument and returns the head element of the list. By using this
property indep, we can describe the property of this problem as follows:

p xs = indep xs ∧ knap xs.

5.4.2 Derivation

This property p is not described as finite mutumorphisms, because the range
of the function hd is not finite generally (for example, in the case that the
type of weight of item is Integer). In order to describe this property p as
finite mutumorphisms, let

p1 = not (marked (hd xs)).

By applying fusion transformation, p1 is transformed into the following form:

p1 [x] = not (marked x)
p1 (x : xs) = not (marked x)

54

Thus the property indep is described as

indep [x] = True
indep (x : xs) = if marked x

then p1 xs ∧ indep xs
else indep xs,

so the functions p, indep, p1, knap, sumw constitute finite mutumorphisms on
non-empty list. By applying Theorem 3, we get O(Cn) algorithm where n is
the number of items, though we omit the result.

5.5 Tree Knapsack Problem

In this section, we consider another variant of knapsack problem, where items
have tree structure. Here as an example we consider an additional condition
that selected items are connected by edges. In [dM95], by using relational
calculus, a linear time algorithm for a similar problem to this problem, but
one have to check two prerequisites when applying their theorem, which
makes the derivation difficult. In contrast, in our optimization theorem,
the prerequisites is simple enough for ordinary functional programmers to
check, which results in easy derivation and makes it possible to automate the
derivation, which will be seen in Chapter 6.

5.5.1 Specification

We consider the binary tree which is defined as follows:

Tree α ::= Leaf α | Bin (α,Tree α,Tree α)

The condition that sum of weight does not exceed the given capacity C can
be defined as follows:

tk t = tws t ≤ C
tws (Leaf x) =
cut (if marked x then weight x else 0)

tws (Bin (x, t1, t2)) =
cut ((if marked x then weight x else 0)

+ tws t1 + tws t2)

55

Next, the condition that selected items are connected by edges can be
described as follows:

tc (Leaf x) = True
tc (Bin (x, t1, t2)) =

if marked x then tc′ t1 ∧ tc′ t2
else (nm t1 ∧ tc t2) ∨ (tc t1 ∧ nm t2)

If the tree is Leaf x, then it satisfies the condition, so tc returns true. If the
tree is (Bin (x, t1, t2)), then if the item x is selected then tc checks whether
t1 and t2 satisfies the condition that selected elements constitute a prefix of
the tree, tc′, otherwise one of t1 and t2 should not have any selected items
and the other one have to satisfy the property tc. The property that tree
does not have any selected items can be defined as follows:

nm (Leaf x) = not (marked x)
nm (Bin (x, t1, t2)) =

not (marked x) ∧ nm t1 ∧ nm t2

The property tc′ can be defined as follows:

tc′ (Leaf x) = True
tc′ (Bin (x, t1, t2)) =

if marked x then tc′ t1 ∧ tc′ t2
else nm t1 ∧ nm t2

This property tc′ checks prefix property, that is, if an item x is selected, then
the parent of x have to be selected. By using these properties, the property
of the tree knapsack problem p can be described as follows:

p t = tk t ∧ tc t

56

5.5.2 Derivation

Since the functions p, tk, tc, tws, nm, tc′ constitute finite mutumorphisms, by
applying Theorem 3, we can obtain the following algorithm:

knaptree t = opt accept φ1 φ2 t
where
accept (a, b, c, d) = a ≤ C ∧ b
φ1 x = (cut (if marked x then weight x

else 0),
True, not (marked x),True)

φ2 (x, (a1, b1, c1, d1), (a2, b2, c2, d2)) =
(cut (if marked x then weight x

else 0) + a1 + a2),
if marked x then d1 ∧ d2

else (c1 ∧ b2) ∨ (b1 ∧ c2),
not (marked x) ∧ c1 ∧ c2,
if marked x then d1 ∧ d2

else c1 ∧ c2)

The obtained algorithm is O(C2n) algorithm, where n is the number of
items.

5.6 0-1 Multiple Knapsack Problem

Here we consider the 0-1 multiple knapsack problem, a variant of knap-
sack problem. In this problem, there are m bags whose capacities are
k1, k2, . . . , km. Each item xi is given value vi and weight wi for i = 1, . . . , n.
Required is to find a feasible assignment of items to bags that maximizes the
sum of values of selected items. Here, an item can be assigned to no bag.
An assignment is feasible when sum of weight of items in each bag does not
exceed the given capacity ki for i = 1, . . . ,m. This problem can be specified
as a maximum multi-marking problem. We assume that weight of items are
integers.

5.6.1 Specification

We express items using a list, as we did in the ordinary knapsack problem.
Property p can be defined as follows:

57

p xs = ∧ (p1 xs, p2 xs, . . . , pm xs)
pi xs = weightsumi xs ≤ ki (i = 1, . . . ,m)

Weight function w can be defined as follows:

w = +/ ◦map f
where f x = case kind x of

0→ 0
→ value x

Here, the function value returns the value of the item.

5.6.2 Derivation

We introduce the functions cuti for i = 1, . . . ,m and describe the property p
as finite mutumorphisms.

p xs = ∧ (p1 xs, p2 xs, . . . , pm xs)
pi xs = sumwi xs ≤ ki (i = 1, . . . ,m)
sumwi [x] = cuti (case kind x of

i→ weight x
→ 0) (i = 1, . . . ,m)

sumwi (x : xs) = cuti (case kind x of
i→ weight x
→ 0) + sumw xs (i = 1, . . . ,m)

cuti w = if w ≤ ki then w else ki + 1

By applying the Theorem, we obtain an O(k1 ·k2 · · · km ·m ·n) algorithm.

5.7 Multidimensional Knapsack Problem

Here we consider the multidimensional knapsack problem, another variant
of knapsack problem. In this problem, there are m kinds of resources whose
capacities are c1, c2, . . . , cm. Each item xi is given value vi and consumes rij

from ith resource, for i = 1, . . . ,m and j = 1, . . . , n. Required is to find a
feasible selection of items that maximizes the sum of values of selected items.
Here, a selection is feasible when consumption of each resource does not
exceed the given capacity ci for i = 1, . . . ,m. This problem can be specified
as a maximum marking problem. We assume that resource consumptions of
each item are integers.

58

5.7.1 Specification

We express items using a list, as we did in the ordinary knapsack problem.
Property p can be defined as follows:

p xs = ∧ (p1 xs, p2 xs, . . . , pm xs)
pi xs = resoucesumi xs ≤ ci (i = 1, . . . ,m)

Here the function resoucesumi computes the sum of consumption of ith
resource.

Weight function w can be described as follows:

w = +/ ◦map f
where f x = case kind x of

1→ value x
2→ 0.

Here, the function value returns the value of the item.

5.7.2 Derivation

In order to describe property p in finite mutumorphisms, we introduce the
auxiliary functions cuti for i = 1, . . . ,m and describe the property p as finite
mutumorphisms.

p xs = ∧ (p1 xs, p2 xs, . . . , pm xs)
pi xs = sumri xs ≤ ci (i = 1, . . . ,m)
sumri [x] = cuti (case kind x of

1→ ri x
2→ 0) (i = 1, . . . ,m)

sumri (x : xs) = cuti (case kind x of
1→ ri x
2→ 0) + sumr xs (i = 1, . . . ,m)

cuti r = if r ≤ ci then r else ci + 1

Here, ri takes an item as its argument and returns consumption of ith re-
source. By applying the Theorem, we obtain an O(c1 ·c2 · · · cm ·n) algorithm.

59

5.8 Weighted Interval Selection Problem

Given a set of weighted intervals, the weighted interval selection problem
is to select a maximum-weight subset such that any two selected intervals
are disjoint [ES00]. An application of this problem is a scheduling of jobs
whose start and end times are fixed and only one job can be executed at a
time. We assume that start and end times are represented by integers. This
assumption is natural in real-world jobs, where we mean that the time unit
is a day or an hour or a minute or a second, and so on.

Suppose the job set is given as a list of jobs in the order of start time,
that is, if job A starts earlier than job B, then job A appears earlier than
job B in the list. We express a job by a 3-tuple of the start time, the time
which it takes, and the weight of the job. Here we express start time by the
difference from the previous job in the job list except for the first job. We
express the time of the first job as 0. This way of expressing start time is for
applying Theorem 4. For example, the list

jobs = [(0, 3, 2), (2, 4, 3), (3, 2, 5)].

is a job list, and jobs represents three jobs where the second job starts at
time 2, and the third job starts at time 5, provided that the first job starts at
time 0. Feasible solutions are selecting the first and the third job or selecting
only one job. So, the maximum solution is selecting the first and the third
job. We express a selection by marking 1 to selected jobs and 2 to the others.
For example, maximum solution for jobs is expressed as

[((0, 3, 2), 1), ((2, 4, 3), 2), ((3, 2, 5), 1)].

Property p checks that the selected jobs do not overlap each other. So, p can
be defined as follows. The accumulating parameter represents the time the
currently executed job takes until it ends.

p xs = p′ xs 0
p′ [] e = True
p′ (x : xs) e = case kind x of

1→ if e− s x > 0 then False else p′ xs (t x)
2→ if e− s x > 0 then p′ xs (e− s x) else p′ xs 0

Here the function s takes as its argument a job x and returns the start time
of it, that is, the first element of the 3-tuple. The function t takes as its

60

argument a job x and returns the time it takes, that is, the second element
of the 3-tuple.

We want to maximize the sum of weight of selected jobs, so we can define
the weight function w as follows:

w = +/ ◦map f
where f x = case kind x of

1→ w x
2→ 0.

Here the function w takes as its argument a job x and returns the weight of
it, that is, the third element of the 3-tuple.

Now the weighted interval selection problem is written as follows:

mmp w p [True,False].

The weight function w is written in the required form, and the property p
can be easily rewritten into the required form, though we omit the form. By
applying Theorem 4, we obtain O(Wn) algorithm, where W is the maximum
length among all jobs, because |Acc| = W + 1, |Class| = 2, and k = 2.

5.9 Mining Optimized Gain Association

Rules

Data mining, which is a technology for obtaining useful knowledge from large
database, has been gradually recognized as an important subject. Algorithms
for data mining have to be efficient, since target database is often huge.
There have been developed many efficient algorithms for various kinds of data
mining problems, among which the problem of mining optimized association
rules has attracted researchers [BRS99, FMMT96a, FMMT96b].

To show concretely the problem of mining optimized association rules,
we consider the following example. Suppose there is a database recording
customers’ transactions in a shop, and we are interested in the association
rules like the following form:

(age ∈ [a..b])⇒ BuyRibbon

whose confidence exceeds a given threshold θ. There are many rules of the
above form by changing a and b. Among them, we would like to find the

61

range of age that maximizes the gain: {the number of customers who bought
ribbon whose age are between a and b} minus {the threshold number, i.e.,
θ times the number of customers whose age is between a and b}. Suppose
that the shop makes a profit if 100θ% of customers buy ribbon. Then, the
optimized gain range [a..b] is the range of customers that maximizes the
shop’s profit with respect to the section of ribbon.

This is an example of mining optimized gain association rules problem.
This problem is transformed to the problem called maximum segment sum
problem (MSS for short) [FMMT96a], and we have a linear time algorithm
[Ben84]. Input of the MSS problem is a number list xs, and output is a con-
secutive sublist of xs that has the maximum sum among all the consecutive
sublists of xs. For example, in the case of xs = [5,−10, 20,−15, 30,−5], the
result is [20,−15, 30], which has the maximum sum 35.

Rule of the above form may not be satisfactory in some cases. For exam-
ple, we may hope to find up to k ranges of age for the rule

(
∨k

i=1 age ∈ [ai..bi])⇒ BuyRibbon

that maximizes the gain. This problem, which is transformed to a k-MSS
problem (Section 5.9.1), is more general and more difficult to be solved ef-
ficiently. A smart O(kn) algorithm has been proposed in [BRS99], but its
correctness is not easy to verify. Furthermore, it is difficult to adapt the algo-
rithm even for a simple modification. For instance, we may want to compute
up to k ranges such that the length of each range is between 5 and 10.

In this section, we show that an efficient linear time algorithm for min-
ing optimized gain association rules is systematically derived from a simple
specification [SHTO01b]. Our approach not only automatically guarantee
the correctness of the derived algorithm, but also is easy to derive new algo-
rithms for modification of the problem.

5.9.1 The Problem of Mining Optimized Gain Associ-
ation Rules

In this section, we show the problem of mining optimized gain association
rules [BRS99] can be transformed to the k-MSS problem.

Recall the problem in Chapter 1. Input database is a set of tuples, each
of which holds information about a customer, including an integer value that
indicates the age of the customer and a boolean value that indicates whether
or not the customer bought ribbon.

62

Table 5.1: Record of customers

age of customers 15 16 17 18 19 20
number of customers (u) 200 300 250 400 100 100

number of customers who buy ribbon (v) 45 50 70 65 50 15
v − θ × u 5 -10 20 -15 30 -5

From the input database, we would like to mine a rule Rribbon of the
following form:

(age ∈ [a..b])⇒ BuyRibbon.

This rule means that a customer of age between a and b often buys ribbon
in a confidence no less than θ. There are many rules of the above form by
changing a and b. Among them, we would like to find one that maximizes
the gain of the rule Rribbon:

gain(Rribbon) = sup(age ∈ [a..b] ∧ BuyRibbon)
− θ × sup(age ∈ [a..b]).

For a condition C, sup(C) is defined as the number of tuples that satisfy the
condition C in the database. Intuitively, this gain shows to what extent the
number of tuples establishing the rule Rribbon exceeds what is expected with
respect to the least confidence θ.

As an assumption for an efficient algorithm, input tuples are sorted ac-
cording to customers’ age1. Then, for each set of tuples that belong to the
same age, we compute g = v − θ × u, where u is the number of customers
and v is the number of customers who bought ribbon. As a result, a list gs
of values of g = v − θ × u is obtained. For example, suppose that record
of customers is as in Table 5.1, which is obtained after the sorting process,
with θ = 0.2. For this example, gs = [5,−10, 20,−15, 30,−5]. The solu-
tion of the MSS problem for the list gs gives the solution of the original
problem [FMMT96a]. In this example, the solution of the MSS problem is
[20,−15, 30], so the corresponding range of age [17..19] is the optimized gain
range. Generally, the problem of mining optimized gain association rules can
be transformed to the MSS problem [FMMT96a].

1The same is assumed also in [BRS99, FMMT96a].

63

In similar way, the optimized gain problem that allows up to k ranges
can be transformed to the k-MSS problem. For details, refer to [BRS99,
FMMT96a].

Here, we formally define the k-MSS problem.

Definition 5 (k-MSS problem) Input of the k-MSS is a list xs of num-
bers, and output is up to k consecutive sublists of xs that have the maximum
sum among all the up to k consecutive sublists of xs.

For this problem, O(kn) algorithm was proposed in [BRS99], which will
be explained in the next section.

Remark

Since the numeric attribute can have real numbers, input tuples are usually
classified into the small number of buckets ordered with respect to the nu-
meric attribute. This process is called bucketing [FMMT96a, FMMT96b].
After the bucketing, find a rule considering only ranges consisting of con-
secutive buckets. Generally, this means that obtained rules are approximate
rules. The bucketing process takes O(n logm) time where n is the number
of tuples in database and m is the number of buckets [FMMT96b].

5.9.2 Constructing k-MSS Algorithm Manually

In this section, we explain the algorithm for k-MSS developed in [BRS99].
The algorithm is a k-path algorithm, at the i-th path of which a solution of
i-MSS is obtained.

• i = 1: At the first path, solve 1-MSS as in [Ben84].

• i > 1: Let the solution of the (i − 1)-MSS be s1, s2, . . . , si and the
remaining sublists be t1, t2, . . . , tj. Solve 1-MSS for t1, t2, . . . , tj and let
one that has the maximum solution be tmax. Solve 1-minimum segment
sum problem for s1, s2, . . . , si and let one that has the minimum solution
be smin. If the segment sum of tmax plus the segment sum of smin is less
than 0, then split smin into three subintervals with the solution of smin

as the middle interval and delete smin from the solution of (i− 1)-MSS
and add the first and third intervals to it, which gives the solution of
i-MSS. Otherwise, split tmax into three subintervals with the solution of

64

tmax as the middle interval and add the solution of tmax to the solution
of (i− 1)-MSS, which gives the solution of i-MSS.

This algorithm iterates k times the process of finding the most effective
sublist and splitting it, and its complexity is O(kn) [BRS99].

For example, consider 2-MSS problem for input list
[5,−10, 20,−15, 30,−5]. At the first path, solve 1-MSS. As a result, the
sublist [20,−15, 30] is obtained. At the second path, let s1 = [20,−15, 30],
t1 = [5,−10], and t2 = [−5]. In this case, we split s1 to [20], [−15], [30] and
get the result [20], [30].

This algorithm is smart, but its correctness is not so obvious. In fact, ver-
ifying this algorithm needs careful consideration [BRS99]. On the contrary,
we will derive O(kn) algorithm from simple specification, and the correctness
is automatically guaranteed.

5.9.3 Deriving k-MSS Algorithm Automatically

In this section, we derive an O(kn) algorithm for the k-MSS problem by spec-
ifying it as a maximum marking problem and applying the theorem proposed
in [SHT01].

5.9.4 Specification

We specify this problem as a maximum marking problem: marking up the
elements of a data structure with finite kinds of marks such that the marked
elements meet certain property p and has the maximum value with respect
to certain weight function w. First, we determine what kind of marks we
use. We use the marks True and False, and we attach the mark True to the
elements that are selected as part of sublists and the mark False to the others.
Second, we describe property p. Property p checks whether the number of
sublists does not exceed the given k. This can be written as follows:

65

p xs = p′ xs (False, k)
p′ [] (m, e) = True
p′ (x : xs) (m, e) = case m of

True→ case kind x of
True→ p′ xs (True, e)
False→ p′ xs (False, e)

False→ case kind x of
True→ if e > 0 then

p′ xs (True, e− 1)
else False

False→ p′ xs (False, e).

The function kind is defined as follows:

kind (x,m) = m.

Finally, we write the weight function w. The function w can be written
as follows:

w xs = sum (map f xs)
where
f x = case kind x of

True→ w x
False→ 0

The function w is defined by w (y,m) = y.
Now we can describe the problem as a maximum marking problem as

follows:
mmp w p [True,False]

The function mmp generates all the possible 2n marked lists, and from
those which satisfy the property p selects one that has the maximum value
with respect to w. For detail, refer to [SHT01].

5.9.5 Derivation

By Theorem 4, the derivation of a linear time algorithm is straight forward.
We omit the process of transforming p and w to the required form, but show

66

only the final result.

optacc (f,+, 0) accept φ1 φ2 δ [True,False]
where
accept (c, e) = c ∧ e == (False, k)
f x = case kind x of

True→ w x
False→ 0

φ1 (m, e) = True
φ2 x (m, e) r =

case m of
True→ r
False→ case kind x of

True→ if e > 0 then r
else False

False→ r

δ x (m, e) =
case m of

True→ case kind x of
True→ (True, e)
False→ (False, e)

False→ case kind x of
True→ (True, e− 1)
False→ (False, e)

The definition of the function optacc is given in Figure 4.3. The complexity
is O(kn) where n is the length of the list. Algorithm obtained by derivation
does not need verification, which is an important benefit of deriving efficient
algorithm from specification.

5.9.6 Comparison

Here we compare the algorithm above with the algorithm developed man-
ually in [BRS99] (See Section 5.9.2). The derived algorithm is a dynamic
programming algorithm and recursive on the input list. In each step it gen-
erates 2k candidate solutions, where 2 corresponds to whether the current
head element is selected or not, and k corresponds to the number of sub-
lists in the current list. So, the derived algorithm performs O(k) operations

67

n times. On the contrary, the algorithm in Section 5.9.2 is a greedy algo-
rithm, which generates only one candidate in each step. But in each step,
O(n) operations are performed. So, the algorithm in Section 5.9.2 performs
O(n) operations k times. So, though order of complexity is same, these two
algorithms are essentially different.

5.9.7 Dealing with Change of Specification

Here, consider the modified k-MSS problem with the condition that the
length of each sublist must be between 5 and 10. It is not so easy to adapt
the algorithm in Section 5.9.2 to this modified problem. However, by our
method, the only thing we have to do is to change the property p as follows:

p xs = p′ xs (2, k) ∧ q xs

The property q checks whether all the selected sublists have length between
5 and 10, which is defined as follows:

q xs = q′ xs (2, 0)
q′ [] (m, e) = if m == 1 then5 ≤ e ∧ e ≤ 10

else True
q′ (x : xs) (m, e) = if kind x == 1 then

q′ xs (1, e+ 1)
else

if m == 1 then 5 ≤ e ∧ e ≤ 10
else True

Similarly to Section 5.9.5, we obtain an O(kn) algorithm for the modified
problem.

5.9.8 Remarks

In this section we show that a linear time algorithm for mining optimized
gain association rules is derived from simple specification by reducing it to a
maximum marking problem. Although a smart O(kn) algorithm is presented
in [BRS99], its correctness is not easy to verify. Moreover, the algorithm is
fragile to modifications of problems. On the contrary, by our method, we can
systematically derive an O(kn) algorithm, and its correctness is automati-
cally guaranteed.

68

By our previous method in [SHTO00], we can also derive a linear time
algorithm for the same problems. However, since its specification does not
allow accumulating parameters, the constant of the algorithm grows expo-
nentially and the resulting complexity becomes O(2kn).

5.10 Features

In this section we highlight several important features of our calculational ap-
proach for solving the maximum marking problems: its simplicity, generality,
and flexibility.

5.10.1 Simplicity

First, as seen in the derivation of a linear-time algorithm for solving the party
planning problem as well as seen in Section 1.7, our calculation is surpris-
ingly simple. With the optimization theorem, all we need to do is derive a
mutumorphic form of the property description. Fortunately, there are a lot
of handy calculation strategies for deriving mutumorphisms [HITT97], such
as generalization of subexpressions to functions and fusion transformation
[Jeu93, BdM96].

In the following we shall further illustrate this simplicity by solving two
problems inspired by the party planning problem mentioned in the Introduc-
tion, whose derivation of linear algorithms are indeed not so straightforward
for even an experienced functional programmer.

Group Organizing Problem

The inputs in the group organizing problem are trees, and we use the same
data structure Org α that we used for the party planning problem. The
property p on the marked tree for this problem is that one of the ancestor
nodes of any two marked nodes must be marked. This can be described

69

recursively by

p :: Org α∗ → Bool
p (Leader v []) = True
p (Leader v (t : ts)) =

if marked v then True
else if nm t then p (Leader v ts)

else p t ∧ nm (Leader v ts).

The first equation means that a single-node tree always satisfies p. The
second equation means that for a tree with the root v, if the root is marked,
then any way of marking the nodes of its subtrees is acceptable. Otherwise,
we have to check each of the subtrees to make sure that at most a single
subtree has marked nodes. The function nm t checks that the tree t has no
marked nodes; it is defined as follows:

nm (Leader v []) = not (marked v)
nm (Leader v (t : ts)) = nm t ∧ nm (Leader v ts)

Using the calculational strategy described in Section 4.6, we can turn these
functions into the following mutumorphisms on Rtree α, which consist of
only property descriptions, and thus can obtain a linear-time algorithm for
the group organizing problem.

p′ :: RTree α∗ → Bool
p′ (Root v) = True
p′ (Join t1 t2) = if lm′ t2 then True

else if nm′ t1 then p′ t2
else p′ t1 ∧ nm′ t2

nm′ (Root v) = not (marked v)
nm′ (Join t1 t2) = nm′ t1 ∧ nm′ t2

70

Supervisor Chaining Problem

Similarly, for the supervisor chaining problem we can specify the property
that the marked nodes form a path chain as follows.

p :: Org α∗ → Bool
p (Leader v []) = True
p (Leader v (t : ts)) =

if marked v then
if nm t then p (Leader v ts)
else marked (getLeader t) ∧ p t ∧

ol (Leader v ts)
else if nm t then p (Leader v ts)

else p t ∧ nm (Leader v ts)

The function ol t checks that the leader of the tree t is marked and the other
nodes of t are not marked.

ol (Leader v []) = marked v
ol (Leader v (t : ts)) = nm t ∧ ol (Leader v ts)

This property p can be expressed using the following mutumorphisms which
consist of only property descriptions.

p′ :: RTree α∗ → Bool
p′ (Root v) = True
p′ (Join t1 t2) = if lm′ t2 then

if nm′ t1 then p′ t2
else lm′ t1 ∧ p′ t1 ∧ ol′ t2

else if nm′ t1 then p′ t2
else p′ t1 ∧ nm′ t2

ol′ (Root v) = marked v
ol′ (Join t1 t2) = nm′ t1 ∧ ol′ t2

Now we can use our optimization theorem, as we did for the partying planning
problem, to obtain a linear-time algorithm that solves the supervisor chaining
problem.

71

u v

e

Base graph

u w w

vu

v

w

e1 e2

e1 e2

Series operation

u v

vu

vu

w

we1

e1 e2

e3e3

e2

Parallel operation

Figure 5.1: Operations of series-parallel graphs.

5.10.2 Generality

Our approach is general (polytypic) enough to deal with maximum marking
problems on data structures that are not lists or trees. To illustrate this,
we derive a linear-time algorithm solving the maximum two disjoint paths
problem on series-parallel graphs [TNS82].

The series-parallel graph is defined as follows:

SPG ::= Base (Vert,Vert,Edge)
| Series SPG SPG
| Parallel SPG SPG

Here Vert represents the type of vertices and Edge represents the type of
edges. Every graph should have a single source and a single sink. The two
data constructors are Series and Parallel. Series g1 g2 makes sense only when
the sink of g1 is the source of g2, and Parallel g1 g2 makes sense only when
g1 and g2 share a source and a sink.

Figure 5.1 shows the meaning of the constructors. For example, the
middle graph in Figure 5.1 is represented by

g = Series (Base (u,w, e1)) (Base (w, v, e2)).

The maximum two disjoint paths problem is defined as follows: when given
two vertices s and t, find two disjoint paths between the two vertices s, t such
that the sum of the edge weights is maximum. Since the two disjoint paths
between the vertices s and t can be seen as a cycle containing the vertices s
and t, we can specify the property p of the problem by

p :: Vert→ Vert→ SPG→ Bool
p s t g = cycle g ∧ th s g ∧ th t g.

Here cycle judges whether the marked edges in the graph form a cycle, and
th v judges whether there is a marked edge incident to the vertex v. These

72

two functions can be defined as follows:

cycle (Base e) = not (marked e)
cycle (Series g1 g2) = (cycle g1 ∧ nm g2) ∨

(nm g1 ∧ cycle g2)
cycle (Parallel g1 g2) = (cycle g1 ∧ nm g2) ∨

(nm g1 ∧ cycle g2) ∨
(span g1 ∧ span g2)

th v g = anyMarked (inc v g)

The function span judges whether the marked edges in the graph span be-
tween the source and sink of the graph, nm judges whether or not there are
marked edges in the graph, anyMarked takes as its argument a list of edges es
and judges whether or not there is a marked edge in es, and inc v g gathers
all the edges of g which are incident to the vertex v.

span (Base e) = marked e
span (Series g1 g2) = span g1 ∧ span g2

span (Parallel g1 g2) = (span g1 ∧ nm g2) ∨
(nm g1 ∧ span g2)

nm (Base e) = not (marked e)
nm (Series g1 g2) = nm g1 ∧ nm g2

nm (Parallel g1 g2) = nm g1 ∧ nm g2

inc v (Base e@(v1, v2,)) = if v == v1 ∨ v == v2

then [e] else []
inc v (Series g1 g2) = inc v g1 ++ inc v g2

inc v (Parallel g1 g2) = inc v g1 ++ inc v g2

By fusion calculation, we can get the following efficient recursive definition
for th.

th v (Base e@(v1, v2,)) = if v == v1 ∨ v == v2

then marked e else False
th v (Series g1 g2) = th v g1 ∨ th v g2

th v (Parallel g1 g2) = th v g1 ∨ th v g2

Now the property description p s t is represented as mutumorphisms with
property descriptions cycle, span, nm, th s, and th t. It follows from our
optimization theorem that a practical linear-time algorithm can be obtained.

73

5.10.3 Flexibility

Here we explain flexibility of our derivation in coping with modification of the
specifications of problems. We choose as our example the maximum segment
sum problem, which is to compute the maximum of the sums of all segments
(contiguous sublist) of a list. This is a quite well-known problem in the
program calculation community [Bir89]. In the following we will not only give
a new solution to it but will also demonstrate that we can straightforwardly
solve a set of related problems that would not be easily solved by using the
previously available approaches.

The maximum segment sum problem is actually a maximum marking
problem where the property is that all marked elements in a list should be
adjacent (connected). This property can be specified as follows:

conn [x] = True
conn (x : xs) = if marked x then

nm xs ∨
(marked (hd xs) ∧ conn xs)

else conn xs

If the list contains only a single element, then the property is satisfied. Oth-
erwise, if the head is marked, then either none of the other elements are
marked or all marked elements are connected to the head. If the head is not
marked, the remaining list is checked recursively. As before, the function nm
judges whether or not any of the elements are marked.

nm [x] = not (marked x)
nm (x : xs) = not (marked x) ∧ nm xs

To transform conn into mutumorphisms which consist only of property de-
scriptions, we generalize the part marked (hd xs) and let it be mh xs.

mh xs = marked (hd xs)

By a simple fusion calculation, we can easily get the following definition of
mh.

mh [x] = marked x
mh (x : xs) = marked x

74

So we have obtained the following mutumorphisms which consist only of
property descriptions.

conn [x] = True
conn (x : xs) = if marked x then

nm xs ∨ (mh xs ∧ conn xs)
else conn xs

Application of the optimization theorem gives us a linear-time algorithm.
Although our linear algorithm may use a few more operations than that
described by Bird [Bir89], it is much easier to derive.

Now consider an extension of the maximum segment sum problem where
we are interested only in those segments containing only even numbers. The
property for this extended problem is

p xs = conn xs ∧ evens xs

where evens can be defined by

evens [x] = if marked x then even (weight x)
else True

evens (x : xs) = if marked x then
even (weight x) ∧ evens xs

else evens xs

It is easy to see that p can be defined as mutumorphisms with property
descriptions conn, evens, nm, and mh, and thus that we obtain a linear
algorithm for solving this extended problem.

Following this line, we can consider many similar segment problems. We
can, for example, consider maximum sums of segments that have even num-
bers of elements by defining the following property

p xs = conn xs ∧ even (mnum xs),

where mnum xs is the number of marked elements in xs. To get mutumor-
phisms which consist only of property descriptions, we generalize the part
even (mnum xs) and let it be em xs.

em xs = even (mnum xs)

75

After deriving a recursive form for em by using calculations similar to those
described above, we can apply the optimization theorem to get a linear-
time algorithm. It should be noted that deriving a linear-time algorithm for
this problem requires some creativity when using the approach described in
[Bir89, Jeu93] because the property p is not prefix-closed. This makes filter
promotion difficult.

Finally, we mention that maximum segment sum problem can be gener-
alized to trees: a segment in a list is simply generalized to a set of connected
nodes in a tree. It should be easy for reader to derive a linear-time algorithm
to solve this generalized problem.

76

Chapter 6

Automatic Generation of
Efficient Programs

In previous chapters, we show that by our proposing method efficient linear
time algorithms for MMP can be derived mechanically. We have showed
that our method is quite general and powerful. In this chapter, we show that
our method can be implemented as a generation system to automatically
generate efficient linear time algorithms for MMP from simple specifications.
It was known that generation of linear time algorithms for MMP (precisely
maximum weightsum problem) can be done by the method proposed by Borie
et al., [BPT92]. Though his method is theoretically appealing, it generates a
prohibitively large table (see Section 3.3 and Chapter 7 for details) and thus
cannot be put to practical use. For each individual problems, a practical
linear time algorithm can be derived by calculation. For example, for a
famous instance of MMP, the maximum segment sum problem, a practical
linear time algorithm derivation was known [Bir89]. But any method for
automatically deriving practical linear time algorithms has not been known
for MMP. Our method we propose in this thesis enables it. We implement our
proposing method and show that it generates practical linear time algorithms
by several examples [YSHT01].

6.1 MAG system

Before we show our implementation, we show that our method can be im-
plemented using an existing transformation system called MAG [dMS98].

77

Though by using MAG system one can automatically generate efficient al-
gorithms for MMP, one cannot specify the transformation strategy, which is
rather inconvenient for describing transformation. So in the next section we
implement a flexible system for MMP.

6.1.1 Implementation

Our generation rule can be implemented, so that efficient programs can be
generated automatically. In this section, we highlight how we can do so using
MAG system [dMS98], a transformation system with a powerful higher order
pattern matching.

As seen in Figure 4.4, our obtained program can be divided into two parts:
the dynamic and static parts. The dynamic part changes from problems to
problems, while the static part remains the same. In Figure 4.4, the upper
part is dynamic and the lower is static. We show how to generate the dynamic
part from the specification mmp w p ms.

Using MAG, we may code the generation of the dynamic part from spec-
ification mmp w p ms as a rule called mmpRule and a rule called fusion as
follows:

mmpRule: mmp wfun p ms

= optacc (fun,oplus,e) (\(c,e) -> c && e==e0)

phi1 phi2 delta ms,

if {wfun = \xs -> foldr oplus e (map fun xs);

p = \xs -> foldrh (phi1, phi2) delta xs e0};

fusion: f (foldr step e xs) = foldrh (phi1’, phi2’)

delta xs,

if {f e = phi1’;

\ y ys acc -> f (step y ys) acc =

\ y ys acc -> phi2’ y acc

(f ys (delta y acc))}

Now for the coloring problem, we can apply this rule to the following
specification and obtain a linear time program like in Figure 4.4 automati-
cally.

coloring: coloring = mmp wf indep [1,2,3];

78

wf: wf xs = (foldr (+) 0 (map w xs));

w: w x = if kind x == 1 then weight x

else if kind x == 2 then (-1) * (weight x)

else 0;

indep: indep xs = indep’ (foldr (:) [] xs) 0;

indep’1: indep’ [] color = True;

indep’2: indep’ (x:xs) color = kind x /= color &&

indep’ xs (kind x);

classlist: classlist = [False,True];

acclist: acclist = [0..3]

With these, the MAG system can produce the linear time program as
given in Figure 4.4. The above corresponds to Theorem 4. In the following,
we show the case for Theorem 3 using the maximum independent-sublist sum
problem. The rule that corresponds to Theorem 3 can be coded as follows:

mmpRule: mmp wfun p ms

= opt (fun, oplus, e) accept phi1 phi2 ms,

if {wfun = \ xs -> foldr oplus e (map fun xs);

p = \ ys -> accept (foldr phi2 phi1 ys)};

split2: split2 f1 f2 x = (f1 x, f2 x);

uncurry2: uncurry2 e = \ x (a1, a2) -> e x a1 a2;

tupling2: split2 f1 f2 (foldr (:) [] xs)

= foldr (uncurry2 g) c xs,

if {split2 f1 f2 [] = c;

\ x xs -> split2 f1 f2 (x:xs) =

\ x xs -> g x (f1 xs) (f2 xs)}

Now for the mis problem, we can apply this rule to the following specifi-
cation and obtain a linear time program like in Figure 1.1 automatically.

mis: mis = mmp w ind [True, False];

w: w = (foldr (+) 0) . map (\ (x,m) -> if m then x else 0);

ind: ind = (\(a1,a2) -> a1) .

split2 ind0 ind1 . foldr (:) [];

ind01: ind0 [] = True;

79

ind02: ind0 (x:xs) = if marked x then ind1 xs

else ind0 xs;

ind11: ind1 [] = True;

ind12: ind1 (x:xs) = if marked x then False

else ind0 xs

As seen above, we can implement our proposing method using MAG,
but the current version of the MAG system has several restrictions such as
not allowing case expression. Moreover, the ordering of rules affects the
derivation. So we make a system by extending the MAG system, which we
name ”Yicho System”.

6.2 Yicho System

In this section we implement a system for generating efficient linear time
algorithms for MMP, which enables flexible description of transformation.
We would like to use a language for describing rules and strategy of genera-
tion. Generally speaking, firstly an effective generation rule is a rule which
is general enough to be able to match many program pattern. Secondly an
effective generation rule is constructive and can be applied in practical time.
For example, the rule ”if there exist two natural numbers p, q that satisfies
n = p×q, then rewrite n into p×q” is not constructive. By using a language
for describing transformation strategy, one can specify how to apply transfor-
mation rules [HT99, TH00, Vis01]．Though there exist systems which does
not have such language to describe strategy like MAG system [dMS98]，it
becomes difficult to perform derivation as user intended. So a language for
describing strategy is desired.

In the following, we propose a language for describing transformation
strategy for generating practical linear time algorithms for MMP and imple-
ment it. The system has the following features.

• Our transformation rule is general enough to be applied to MMP and
thus it can be applied to many problems. It is constructive and can be
easily implemented.

• We use a meta language, called ”calculation carrying program (CCP
for short)” [TH00], for describing transformation strategy. Previously
available transformation description languages [Vis01] have only first

80

order matching and thus restrict the rules which can be directly de-
scribed. In constrast, CCP has higher order matching, it enlarge the
rules which can be directly described. Another feature of CCP is de-
scription about control of transformation. For example, it is possible
to apply rules when certain condition satisfied, to repeat application of
some rule, or to use some strategy in another strategy. Description of
strategy in intuitive form is one reason for CCP to be appropriate to
describe strategy.

• In our system, one can compile CCP to script, which is an intermedi-
ate language in our system. Environment to excute obtained script is
available, which makes it easy to debug.

6.2.1 Structure of automatic generation system

In this section, we show a structure and implementration of the automatic
generation system for MMP, which is implemented using a functional pro-
gramming language Haskell [PJH99, Bir98].

Structure of the system

The system consists of two layers. The above layer is for high level description
of transformation strategy, which is described by a language based on CCP
[TH00] (Section 6.2.2). CCP has higher order matching, so it is possible
to describe a wide range of transformation rules. The lower layer is for
description of transformation steps, which is described by a script language.
After checking the syntax and type of CCP, CCP is transformed into the
script language (Section 6.2.3).

CCP is approprite to describe high level transformation, so a stragegy
described in CCP can be reused for several programs by no chage or small
change. Script is for low level transformation, so it can be reused for exactly
same structure programs.

Lower level provides an interactive environment, which is for step by step
excution, undo of a transfomation, showing bindings of variables, showing
rules that can be applied to the current expression, and so on (Section 6.2.2)．

CCP and script language is independent, so, it is possible to use a script
that is output of some other system.

81

6.2.2 Calculation Carrying Program (CCP)

CCP is a program accompanied by calculation rules [HT99]. Program calcu-
lation is transforming program to efficient one by applying calculation rules.
Generally speaking, program calculation is done by hand and calculation
rules and how to apply them varies according to object program. When
calculating programs on a computer, how to calculate should be written in
some way. CCP gives one way for that. CCP is a program accompanied by
calculation rules and how to apply them, so programmer can specify how to
calculate efficient programs. General rules such as fusion rule or tupling rule
are reusable once it is written. Furthermore, CCP has higher order matching,
so it is possible to describe calculations directly.

An Example — sumsq

Here, we show what is CCP by using a problem to get sum of square of list
of numbers. This problem can be solved by squaring each element and then
summing up. By letting the square function be sq and the sum function be
sum,

sumsq = sum ◦map sq

gives one solution to this problem. This generates an intermediate list which
is the result of map sq, but it is possible to describe it not to generate this
intermediate list. We would like to transform the above function sumsq to
one which does not generate this intermediate list. This can be done by the
fusion transformation.

Theorem 5 (Fusion Rule) If for any a, x

g a (f x) = f (step a x)

holds, then
f ◦ foldr step e = foldr g (f e)

holds. 2

The function foldr is a list folding function, which is defined as follows:

foldr step e [] = e
foldr step e (x : xs) = step x (foldr step e xs)

82

In order to apply this fusion theorem, we change map sq into the form of
foldr step e.

map sq = foldr step []
where step y ys = (sq y) : ys

Next, we should find function g that satisfies the following equation:

g y (sum ys) = sum (step y ys)

The following function g satisfies this equation.

g y s = sq y + s

Since sum [] = 0, by applying the fusion theorem, we get

sum ◦map sq = foldr g 0

This function foldr g 0 does not produce an intermediate list when computing
square sum, so efficiency is improved by this transformation.

When doing this kind of calculation on a computer, we should describe
how to calculate in some way. CCP gives one way of describing it. In CCP,
we accompany object program with calculation. For example, CCP for the
sumsq problem is written as in Figure 6.1.

CCP can be divided into three parts. In Figure 6.1, the first part is
object program, the second part is calculation rules, (fusion, applyFusion)，
and the last part is to specify how an efficient function sumsqOpt should be
obtained from the object program sumsq.

The first part is the specification of the sumsq problem. Though this
specification generates an intermediate list when computing square sum, we
can transform it to efficient one that does not generates the intermediate list.
The second part describe this transformation process. The rule <fusion> is
an implementation of the fusion theorem (Theorem 5). When applying the
fusion rule, the right function g in the function composition f . g should
be described in the form foldr step e. For that purpose, we define the
calculation rule applyFusion.

In the rule applyFusion, the right most function in the given function
composition is rewrited into the form foldr step e by fusing with identity
function foldr (:) [] and then the fusion rule <fusion> is applied suc-
cessively. By applying this calculation rule applyFusion to the expression
sum . map sq, we get the form that does not generate an intermediate list.

83

-------------- Object Program -----------------

sumsq = sum . map sq;

sum [] = 0;

sum (_x:_xs) = _x + sum _xs;

sq _x = _x * _x;

map _f [] = [];

map _f (_x:_xs) = f _x : map _f _xs;

foldr _step _e [] = _e;

foldr _step _e (_a:_x) = _step _a (foldr _step _e _x);

(_f . _g) _x = _f (_g _x);

-------------- Calculation Rules -----------------

<fusion> _f (foldr _step _e _xs) =

letm _g a (_f x) = _f (_step a x);

_c = _f _e

in foldr _g _c _xs;

<applyFusion> (_f . _g) = <fusion> (_f . <applyFusion> _g);

<applyFusion> _f = <fusion> (_f . foldr (:) []);

-------------- Application of Calculation Rule -----------------

sumsqOpt = <applyFusion> (<unfold> sumsq)

Figure 6.1: An Example of CCP — sumsq

84

The last part describes that. First the definition of sumsq is unfolded by the
rule <unfold> and then applyFusion is applied to that. As a result, the
function sumsqOpt which does not generate an intermediate list is obtained.
The rule <unfold> is a built-in calculation rule that unfolds a definition of
function.

In CCP, one can describe function definitions and calculation rule defini-
tions together. We distinguish function from rule by surrounding the name
of calculation rule. Furthermore, in a definition of calculation rule, another
calculation rule or itself can be called. Allowing this kind of description en-
ables it to describe complex calculation rule by combining basic calculation
rules as seen in the rule <applyFusion>.

In CCP, the name of pattern variables starts by _ in order to distinguish
them from local variables. For example, in the matching of letm expression

_g a (_f x) = _f (_step a x)

a and x does not start with _, which means that these are not pattern
variables but local variables. The locality means that the equation

_g a (_f x) = _f (_step a x)

holds for any _a and _x with appropriate types.

The language for describing CCP

We define the language for describing CCP as in Figure 6.2.
In CCP, we can describe function definitions (funDef) and rule defini-

tions (ruleDef) together. We can also use, in an expression, rule applica-
tions, meta lambda abstractions, meta let expressions, meta case expressions
where higher order pattern matching [dMS99] is performed. When pattern
matching is performed, substitutions for pattern variables are obtained. We
define the meaning of expressions including higher order pattern matching
as follows:

• Meta let Expression
letm ep1 = eb1 ; . . . ; epn = ebn in e

Obtain substitutions for pattern variables in expressions ep1 , ldots, epn

by a higher order pattern matching algorithm [dMS99], evaluate the ex-
pression e with the obtained substitutions, and finally let the obtained
value of e as the value of the whole meta let expression.

85

CCP:
ccp ::= def1; . . . ; defn Definitions

Definition:

def ::= funDef Function Definition
| ruleDef Rule Definition

Function Definition:

funDef ::= f pats = e Function Definition

Rule Definition:

ruleDef ::= 〈r〉 ep = eb Rule Definition

Expression:

e ::= haskellExp Expression of Haskell
| em Expression including higher order pattern matching

Expression including higher order pattern matching:

em ::= letm ep1 = eb1 ; . . . ; epn = ebn in e Meta let Expression
| casem e of ep1 → e1; . . . ; epn → en Meta case Expression
| 〈r〉 e Rule Application

Figure 6.2: Definition of CCP

86

• Meta case Expression
casem e of ep1 → e1; . . . ; epn → en

Perform higher order pattern matching with respect to the expression e
with the expressions ep1 , . . . , epn using the higher order pattern match-
ing algorithm [dMS99]. Obtain substitutions for the expression epi

that
is the first expression to succeed in matching, evaluate the expression
ei with the obtained substitutions, and finally let the obtained value of
ei as the value of the whole meta case expression.

• Rule Application 〈r〉 e
Apply the rule r to the expression e. When the rule r is defined as

〈r〉 ep = eb

perform higher order pattern matching with respect to the expression
e with the expression ep using the higher order pattern matching al-
gorithm [dMS99] to obtain substitutions for pattern variables in ep,
evaluate the expression eb with the obtained substitutions, and finally
let the obtained value of eb as the value of the whole rule application
expression.

In the definition of CCP, haskellExp represents expressions of the func-
tional language Haskell [PJH99, Bir98], we implement part of them in the
current version of the system. We adopt that the name of a pattern variable
starts with underscore and the one of the other kind of variables does not
start with . This distinction is for distinguish local variables from pattern
variables in letm expressions.

script

We define the syntax of script as in Figure 6.3. Script is a description of
transformation steps. By using script, we can execute transformation in-
teractively for debugging. Script is divided into three parts, commands for
setting environment, commands for doing transformation, and commands for
debugging.

There are four kinds of commands for setting environment. Command
setPath is for specifying path for the file of CCP. Command loadTheory is for
loading rules. Command setExp sets an expression as starting expression.

87

Script

Command ::= EnvComm Command for setting environment
| IntComm Command for doing transformation
| DebugComm Command for debugging

Command for setting environment

EnvComm ::= setPath PathName Specifying path of file of ccp
| loadTheory TheoName Loading transformation rules
| setExp ExpName Setting starting expression

Command for doing transformation

IntComm ::= step LawName Path rule application
| beginDerivation LawName Path starting local derivation
| match obtaining substitution by pattern matching
| endDerivation ending local derivation
| createRule RuleName creating a new rule

Path ::= Loc1 Loc2 · · · path for subexpression
Loc ::= B body of a λ expression

| F function part of function application
| A argument part of function application

Command for debugging

DebugComm ::= help displaying help
| showDerivation showing derivation up to the present
| quit quitting
| showBindings showing bindings of local variables
| showStack showing all the local derivations
| undo undoing a transformation
| showSubExpressions showing all the subexpressions
| showTheory showing all the rules

Figure 6.3: The syntax of script

88

Commands for doing transformation are divided into five kinds. Com-
mand step takes a rule and location of subexpression in the current expres-
sion and applies the rule to the subexpression indicated by the location.
Location of a subexpression is written by a sequence of B or F or A where B
represents body of lambda expression, F represents function part of function
application, and A represents argument part of function application.

Command beginDerivation takes a rule and location of subexpression
and starts sub-derivation. Command match match the pattern of condition
and current expression, and memorize the obtained substitution. Command
endDerivation ends the sub-derivation and substitute the pattern variables
in the right hand side of the rule using the obtained substitutions in the
sub-derivation, and substitute the subexpression with the right hand side of
the rule substituted.

Command createRule adds a rule that transforms the starting expression
to the current expression with a specified rule name.

Commands for debugging are used when debugging. Command help
displays commands currently executable. Command showDerivation dis-
plays the derivation up to the present. Command quit quits the session
even if there are commands not executed yet below the command. Com-
mand showBindings displays local variables in the current expression. Com-
mand showStack displays several informations before entering the current
sub-derivation and the current sub-derivation. Command undo undo one
step. Command showSubExpressions displays all the subexpressions of the
current expression. Command showTheory displays all the rules that can be
applied.

Here we show an example of script, which is for improving efficiency of a
function sumsq that computes sum of square of each elements. The script is
shown in Figure 6.4. A number and a colon at the head of each line is not
included in the script, only for explanation. In the first line, #! represents
that this file is script. In the second line, the command setPath specifies
directory of file in which CCP is written. In the third line, the command
loadTheory loads the file sumsq where calculation rules are described. In
the fourth line, the command setExp sets the expression sumsqOpt as the
starting expression. In the fifth to eighth lines, the command step transforms
expression. For example, in the fifth line, the rule sumsq is applied to the
function part of function application in the body of lambda expression, which
is the current expression. Expressions are represented in the η-expanded form
in the system, so the expression sumsq is represented as λxs . sumsq xs. The

89

1: #!

2: setPath "~/ysys/examples"

3: loadTheory "sumsq"

4: setExp "sumsqOpt"

5: step "sumsqOpt" "BF"

6: step "sumsq" "BF"

7: step "applyFusion1" "BF"

8: step "applyFusion2" "BFA"

9: beginDerivation "fusion" "BFABF"

10: step "map2" "BB"

11: match

12: step "map1" ""

13: match

14: endDerivation

15: beginDerivation "fusion" "BF"

16: step "sum2" "BB"

17: match

18: step "sum1" ""

19: match

20: endDerivation

21: showDerivation

22: quit

Figure 6.4: An example of script – sumsq.ys

90

body of the λ expression is sumsq xs and the function part of it is sumsq.
Since this expression sumsq matches with the left hand side of the rule sumsq
in the second line of 6.5, By applying the rule sumsq, we obtain the following
expression.

λxs . sum (map sq xs)

This expression is displayed in the η-contracted form as in the fifth line
of Figure 6.6. In the ninth line, the command beginDerivation starts sub-
derivation for the rule fusion. In the sub-derivation, by transforming left
hand side to right hand side in each conditional equation in the if clause, we
get substitution for pattern variables. By using the obtained substitutions,
the rule fusion is applied. Here, by the command match substitutions are
obtained and by the command endDerivation the sub-derivation is ended. In
the 21th line, the command showDerivation displays the derivation up to the
present, which is shown in Figure 6.6. In the 22th line, the command quit
finishes the session.

Transformation rules are written as in Figure 6.5. The part surrounded
by ”{-” and ”-}” is comment. Rules are separated by a semicolon ”;”. In
each rule definition, rule name is written before colon ”:” and the remaining
part represents a rule where left hand side and right hand side are sepa-
rated by equal ”=”. The if clause is used when describing conditional rule.
Conditional equations are separated by semicolon ”;”.

The result of execution of the above script is as in Figure 6.6.

6.2.3 Execution of CCP and transformation to script

In this section, we show how to execute CCP. Script is record of execution
of CCP. So, executing CCP is also a transformation of CCP to script.

When executing CCP, as a preprocess, CCP is transformed into the form
that each rule does not call another rule. Each function definition is simply
transformed into rule to unfold the definition. Definition of calculation rule is
transformed into the form where rule applications in the right hand side of it
are removed. These transformations are performed on expressions including
higher order pattern matching as follows:

• Meta let expression
letm ep1 = eb1 ; . . . ; epn = ebn in e

This is transformed to a conditional expression as follows:

91

{- sumsq.eq -}

sumsq : sumsq = sum . map sq;

sum1 : sum [] = 0;

sum2 : sum (x:xs) = x + sum xs;

sq : sq x = x * x;

map1 : map f [] = [];

map2 : map f (x:xs) = f x : map f xs;

foldr1 : foldr step e [] = e;

foldr2 : foldr step e (a:x) = step a (foldr step e x);

fusion : _f (foldr _step _e _x) = foldr _g _c _x,

if{ \ x a -> _f (_step a x) = \ x a -> _g a (_f x);

_f _e = _c };

applyFusion1: _f . _g = _f . _g;

applyFusion2: _f = _f . foldr (:) [];

sumsqOpt: sumsqOpt = sumsq

Figure 6.5: Rule definitions – sumsq.eq

92

sumsqOpt

= { sumsqOpt }

sumsq

= { sumsq }

sum . map sq

= { applyFusion1 }

sum . map sq

= { applyFusion2 }

sum . (map sq . foldr (:) [])

= { fusion

(\ a x -> map sq (a : x))

= { map2 }

(\ b d -> sq b : map sq d)

map sq []

= { map1 }

[]

}

sum . foldr (\ g -> (:) (sq g)) []

= { fusion

(\ a x -> sum (sq a : x))

= { sum2 }

(\ b c -> sq b + sum c)

sum []

= { sum1 }

0

}

foldr (\ f -> (+) (sq f)) 0

Figure 6.6: Result of derivation – sumsq.out

93

e, if {eb1 = ep1;

eb2 = ep2;

...

ebn = epn}

In equations for matching, left hand side and right hand side are
swapped, which is for writing pattern in the right hand side in a rewrit-
ing rule.

• Meta case expression
casem e of ep1 → e1; . . . ; epn → en

The following n rules are generated and the meta case expression is
transformed into e.

ep1 = e1;

ep2 = e2;

...

epn = en

CCP is executed by applying the obtained rewriting rules in the order
specified in CCP. The record of applied rules and location to which rules are
applied is script. We show the process of execution of CCP by an example
in the following.

Here as an example, we transform CCP for the sumsq problem to script.
CCP for the sumsq problem is shown in Figure 6.1. We execute the CCP
according to the procedure given above, as a result of which script is obtained.
Firstly as a preprocess, each function definitions are transformed into the rule
which unfolds the definition itself. Each calculation rules are transformed into
the rule that is obtained by removing rule applications in the right hand side
mechanically. As a result, we obtain the rewriting rules as in Figure 6.7.

The rule applyFusion1 rewrite nothing since the original rule does not
do other than application of rules <fusion> and <applyfusion>.

Next, the obtained rewrite rules in Figure 6.7 are applied in the order
specified in CCP in Figure 6.1. The calculation process is as in Figure
6.6. Firstly sumsqOpt is transformed to sumsq and then it is unfolded by
<unfold>. The rule <applyFusion> is applied to it when sum . map sq

is tested for matching against _f . _g and the rule applyFusion1 is ap-
plied. Here nothing is changed since nothing other than rule application is
done. Later the rule applyFusion will be applied to map sq and then the

94

sumsq: sumsq = sum . map sq;

sum1: sum [] = 0;

sum2: sum (x:xs) = x + sum xs;

sq: sq x = x * x;

map1: map f [] = [];

map2: map f (x:xs) = f x : map f xs;

foldr1: foldr step e [] = e;

foldr2: foldr step e (a:x) = step a (foldr step e x);

compose: (_f . _g) _x = _f (_g _x);

fusion: _f (foldr _step _e _xs) = foldr _g _c _xs,

if{ _f (_step a x) = _g a (_f x);

_f _e = _c}

applyFusion1: _f . _g = _f . _g;

applyFusion2: _f = _f . foldr (:) [];

sumsqOpt: sumsqOpt = sumsq;

Figure 6.7: Rewriting rules for sumsq

95

rule <fusion> will be applied. Next the rule <applyFusion> is applied to
map sq, but map sq does not match with _f . _g, applyFusion2 is ap-
plied. As a result sum . (map sq . foldr (:) []) is obtained. Later the
rule <fusion> will be applied to (map sq . foldr (:) []). After that the
rule <fusion> will be applied twice and an efficient program that does not
produce any intermediate list is obtained.

By recording the applied rules and locations they are applied as script
form, we get a script as in Figure 6.4.

6.2.4 Example of maximum marking problems

Here we automatically generate efficient linear time algorithms for several
maximum marking problems by using the system described in Section 6.2.1.

Maximum segment sum problem

Here we automatically generate an efficient linear time algorithm for solving
the maximum segment sum problem (mss for short). The mss problem can
be specified as a maximum marking problem.

mss = ↑w / ◦ filter conn0 ◦ gen (6.1)

Firstly 2n marked lists are generated by the generation function gen.
Then by filter conn0 only lists that satisfies the property conn0 is extracted.
Finally by ↑w / a marked list that maximizes the value of the weight function
w.

We would like to obtain an efficient linear time algorithm for mss from
this specification. We describe CCP for that as in Figure 6.8. The equation
(6.1) is written in the first line in Figure 6.8. The function bmax w represents
(↑w) and the function reduce represents (/).

The rule mmpRule represents the optimization theorem (Theorem 3), that
transforms to the optimization function opt. If properties satisfy the condi-
tion in the optimization theorem, the property conn0 can be decomposed to
a composition of an accept function and a finite catamorphism by the rule
<tupling>. By compiling this CCP, we obtain a script similar to the one in
Figure 6.4.

96

-------------- Program -----------------

mss = reduce (bmax w) . filter conn0 . gen;

reduce f [x] = x;

reduce f (x:xs) = f x (reduce f xs);

bmax f a b = if f a > f b then a else b;

w = reduce (+) . map fc

where fc (x,m) = if marked (x,m) then x

else 0;

filter p [] = [];

filter p (x:xs) = if p x then x : filter p xs

else filter p xs;

conn0 [] = True;

conn0 (x:xs) = if marked x then conn1 xs else conn0 xs;

conn1 [] = True;

conn1 (x:xs) = if marked x then conn1 xs else conn2 xs;

conn2 [] = True;

conn2 (x:xs) = if marked x then False else conn2 xs;

marked (x,b) = b;

gen [] = [[]];

gen (x:xs) = [x’:xs’ |

x’ <- [mark x,unmark x],

xs’ <- gen xs];

mark x = (x,True);

unmark x = (x,False);

foldr _step _e [] = _e;

foldr _step _e (_a:_x) = _step _a (foldr _step _e _x);

Figure 6.8: CCP for the maximum segment sum problem (the first half)

97

-------------- calculation rules -----------------

<mmpRule> (reduce (bmax _w) . filter conn0 . gen) =

letm _accept . _h = <tupling> conn0;

reduce _oplus . map _f = _w;

foldr _phi2 _phi1 = <applyFusion> _h

in opt (_oplus,_f) _accept _phi1 _phi2;

<tupling> conn0 =

letm _h xs = (conn0 xs,conn1 xs,conn2 xs);

_accept (t0,t1,t2) = t0;

in _accept . _h;

<fusion> _f (foldr _step _e _xs) =

letm _g a (_f x) = _f (_step a x);

_c = _f _e

in foldr _g _c _xs;

<applyFusion> (_f . _g) = <fusion> (_f . <applyFusion> _g);

<applyFusion> _f = <fusion> (_f . foldr (:) []);

--------- Application of calculation rule --------

mssOpt = <mmpRule> (<unfold> mss)

Figure 6.9: CCP for the maximum segment sum problem (the second half)

98

-------------- Program ---------------------------
mss’ = reduce (bmax w) . filter p . gen;
...
p xs = conn0 xs && even xs;
even [] = True;
even (x:xs) = if marked x then odd xs else even xs;
odd [] = False;
odd (x:xs) = if marked x then even xs else odd xs;
h xs = (p xs,even xs,odd xs,conn0 xs,conn1 xs,conn2 xs);
...
accept (t0,t1,t2,t3,t4,t5) = t0;

-------------- Calculation rules -----------------
...

---------- Application of calculation rule -------
mssOpt’ = <mmpRule> (<unfold> mss’)

Figure 6.10: CCP for the extended version of mss

An extension of the mss problem

Here we consider a problem that is an extension of the mss problem, extended
with respect to the property a solution should satisfy. We require that the
number of selected elements in the input list should be even. By letting the
additional condition even, we can describe the property p for the extended
problem as follows:

p xs = conn0 xs ∧ even xs

where the property conn0 is for the original mss problem.
The extended problem is also a maximum marking problem. CCP for the

extended problem can be described as in Figure 6.10 where only different part
from Figure 6.8 is described. The calculation rule mmpRule is not changed at
all.

99

6.2.5 Summary

In this chapter, we show an implementation of the theorem we proposed, that
is, we design a system for automatically generating efficient linear time algo-
rithms for maximum marking problems based on our theory proposed in this
thesis. In concrete aspect, we propose a language for describing transforma-
tion, implement the theorem in the language, and show the system implemen-
tation. We showed effectiveness of our method by automatically generating
efficient linear time algorithms for several maximum marking problems using
the implemented system.

100

Chapter 7

Related Work

Since the mid-1980s there have been several powerful approaches by dynamic
programming, and many NP-complete problems have thus been reduced to
linear-time problems for families of recursively constructed graphs. The pio-
neering work in this field was on series-parallel graphs [TNS82].

The backbone concept is a class of graphs with bounded tree-width [RS86],
which was independently developed as partial k-tree [Arn87] and is also dis-
cussed in terms of separators [Tho90a] and cliques [KT90]. The set of graphs
with tree-width at most k is equal to the set of k-terminal graphs constructed
by algebraic composition rules [ACPS93]. NP-complete problems on graphs,
such as the Hamilton path problem, are often linear in the size and beyond
exponential in the tree width by the divide-and-conquer strategy according
to this algebraic construction.

Much work has been done [Bod93, Arn95], but most of it is on individ-
ual graph problems. Courcelle showed that whether a (hyper) graph with
bounded tree width satisfies a closed monadic second order (MSOL, for short)
formula (of graphs) is solvable in linear time [Cou90a]. Borie et al. further
showed that the recognition, enumeration, and optimization problems speci-
fied by an extension of MSOL formula can be solved in linear time [BPT92].
This graph variant of MSOL uses Inc (v, e), which means a vertex v is an
incident of an edge e, instead of the use of a successor function in ordinary
MSOL [Tho90b].

Although appealing in theory, these methods are hardly useful in practice
due to a huge constant factor for space and time. This arises from the
manipulation of huge tables:

101

• The construction of tables reflects the decomposition of the property
description into primitive ones; previous methods adapt fixed basic
predicates as primitives, whereas our method freely adapts new primi-
tives if they are in the form of mutumorphisms.

• Their construction of tables causes the exponential blow-up at each oc-
currence of quantifiers. Our method replaces the occurrences of quan-
tifiers with recursions, which are computationally more efficient.

Aspvall et al. proposed a method to reduce the run-time memory storage
by reducing the number of simultaneously needed tables [APT00]. Our work
reduces the size of tables directly, complementing their work.

To investigate the relation between mutumorphisms and MSOL is a good
research topic, to which recently one solution seemed to be given by Kassios
[Kas01]. He gave an algorithm which transforms logical formula in [BPT92]
to mutumorphisms which consist of small number of functions.

Bird calculated a linear-time algorithm for solving the maximum seg-
ment sum problem on lists [Bir89], which is a kind of maximum marking
problem. Bird and de Moor studied optimization problems, which include
maximum marking problems, in a more general way that uses relational cal-
culus [BdM96]. For instance, a greedy linear functional program for the party
planning problem can be derived using relation calculus. Using relational cal-
culus, they developed a very general framework to treat optimization prob-
lems. It is called thinning theory, and the thinning theorem plays the central
role. But when applying the thinning theorem, one has to find two preorders
which meet prerequisites of the thinning theorem, which makes it difficult
for the theorem to be used for mechanical program generation. And they
didn’t show the relation between the complexity of derived algorithms and
specifications, in return for discussing in a very general framework. We in-
stead focus on a useful class of optimization problems, maximum marking
problems, propose a very simple way to derive efficient algorithms, and as-
sure the complexity of the derived algorithms. When the target problem is a
maximum marking problem, the two preorders for the thinning theorem can
be derived automatically by applying the optimization theorem. To apply
our optimization theorem, the only thing one has to do is to describe the
property in the form of mutumorphisms. One significant reason for achiev-
ing this simplicity in derivation is that we have recognized the importance of
the finiteness of the range of a catamorphism as in the optimization lemma,
which received little attention in [BdM96].

102

De Moor considered a generic program for sequential decision processes
[dM95] which are specified as follows:

listmin r . filter p . fold (choice fs) [c]

The target problems are on lists and trees. They include maximum marking
problems by letting the list of functions fs, used in the above specification
of sequential decision processes, be a list of marking functions. But property
p is restricted to be suffix-closed. There are many examples whose property
is not suffix-closed.

Johan Jeuring proposed several fusion theorems, each of which deals with
a class of optimization problems such as subsequence problems on lists, par-
tition problems on lists, and so on [Jeu93]. In order to derive an efficient
program for a problem by his method, one has to select a suitable fusion
theorem, which is not necessary in our method.

Recently, Bird showed that the maximum marking problems can be
treated in the framework of thinning theory [Bir00]. He assured the derived
algorithm is a linear time algorithm, and showed the generic Haskell program
for solving the maximum marking problems on polynomial data types. His
method also requires that the property p should be suffix-closed. We show
his method later in detail and compare it with ours.

In graph algorithms, Borie et al. proposed a method which enables
the derivation of a linear time algorithm for solving the maximum mark-
ing problems on k-terminal graphs, a restricted class of graphs, from logical
description of properties by a graph variant of monadic second order formula
[BPT92]. This graph variant of MSOL uses Inc (v, e), which means a vertex
v is an incident of an edge e, instead of the use of a successor function in
ordinary MSOL [Tho90b]. Although appealing in theory, these methods are
hardly useful in practice due to a huge constant factor for space and time.

Program Transformation System

There are several program transformation system. One of them is stratego
[Vis01], which is a language for describing a program transformation. The
system we implemented in this thesis depends on a calculation describing
language called Calculation Carrying Program (CCP for short) [HT99]. The
words ”calculation carrying” represent that the code which specifies how
to calculate an efficient program is accompanied with the original program.

103

This method is useful for the user who use the program in the sense that he
can know the meaning of the program easily by the original program in CCP,
and at the same time he can obtain an efficient program by calculating it.
Another possible approach for describing program transformation is to use
meta programming language such as Meta-ML, which is an extension of the
language ML.

Relational Calculus

Here we show the derivation of a linear time algorithm for MMP by relational
calculus. First, we show the Bird’s derivation [Bir00]. Second, we extend the
specification to one which can express the same class as ours specification
can do.

Specification by Bird

Maximum marking problem can be specified by a relation as follows:

mmp = max (≤) ◦ Λ(w ◦ dom p ◦mapT mark)

This specification is interpreted not as Haskell functions, but as multifunc-
tions. A multifunction is a nondeterministic function, that is, a relation that
associates zero or more results with each argument. Type of multifunction
is written as A ; B rather than A→ B. For example,

mark :: α ; α∗

mark n = (n,True) 2 (n,False)

The type of p is
p :: T α∗ −→| Class

For the mss problem, p can be defined as follows:

conn :: T α∗ −→| Class
conn = foldFList

f
where f (1, ()) = c1

f (2, ((x, b), r)) =

r == c1 ∧ b → c2
r == c1 ∧ ¬b → c1
r == c2 ∧ b → c2
r == c2 ∧ ¬b → c3
r == c3 ∧ ¬b → c3

104

Here FList is defined as follows:

FList(a, b) = 1 + a× b

The box 2 signifies nondeterministic choice. The type α∗ is defined as
follows:

α∗ = α×Bool

The type of mapT is

mapT :: (a ; b)→ (T a ; T b)

This is like the ordinary map function associated with a data type T except
that it can take a multifunction as argument and return a multifunction as
result. The combination mapT mark denotes the operation of marking an
element of T α in a completely nondeterministic way.

The function dom, which takes a multifunction as argument and returns
a partial function as result, is defined as follows:

dom :: (a ; b)→ (a −→| a)
dom p = fst ◦ 〈id, p〉

The split operation 〈f, g〉 is defined by 〈f, g〉 x = (f x, g x). The expression
〈f, g〉 denotes a multifunction that returns a result on an argument x if and
only if both f and g do.

The weight function w is defined as follows:

w :: T α∗ →Weight
w = sum ◦mapT mw
mw (e, b) = if b then e else 0

The subsidiary function sum :: T Weight→Weight for summing a structure
of weights will be defined later.

The operation Λ turns a multifunction into the corresponding set-valued
function:

Λ :: (a ; b)→ (a→ Set b)
(Λf) a = {b | b← f a}

We write b ← f a to denote the fact that b is a possible value of f a. Thus
(Λf) a returns the set of all possible values b that can be returned as the
result of applying the multifunction f to a.

105

The multifunction max is defined by

max :: (a→ a→ Bool)→ (Set a ; a)
a← max (�) as ≡ a ∈ as ∧ (∀b ∈ as : b� a)

In words, max takes an ordering � and a set as as argument, and returns
some maximum element in as under �. It is required that � should be a
connected preorder. A relation r is said to be preorder if r is a reflexive and
transitive relation. A relation r is said to be connected if for all x and y,
either x � y or y � x. Then it is guaranteed that max (�) as produces
at least one result for all nonempty sets as. It is different from functional
specification that max (�) as does not specify which element of as should
be chosen.

Calculation

The specification of mmp is as follows:

mmp = max (≤) ◦ Λ(w ◦ dom p ◦mapT mark)

First, rewrite the subexpression w ◦ dom p:

w ◦ dom p
= { definition of dom }

w ◦ fst ◦ 〈id, p〉
= { claim }

fst ◦ 〈w, p〉
= { definition of w }

fst ◦ 〈foldF plusF ◦mapT mw, p〉
= { type functor fusion }

fst ◦ 〈foldF (plusF ◦mapF (mw, id)), p〉
= { assume p = foldF partF }

fst ◦ 〈foldF (plusF ◦mapF (mw, id)), foldF partF 〉
= { banana split }

fst ◦ 〈foldF f〉

Here, f is defined as follows:

f :: F (α∗, (Weight,Class)) −→| (Weight,Class)
f = 〈plusF ◦mapF (mw, fst), partF ◦mapF (id, snd)〉

106

The claim is a consequence of two laws:

f ◦ fst = fst ◦ (f × id)
(f × g) ◦ 〈h, k〉 = 〈f ◦ h, g ◦ k〉

where (f × g)(x, y) = (f x, g y).
Now we can rewrite the subexpression w ◦ dom p ◦mapT mark:

w ◦ dom p ◦mapT mark
= { above }

fst ◦ foldF f ◦mapT mark
= { type functor fusion }

fst ◦ foldF g

where g :: F (α, (Weight,Class)) ; (Weight,Class) is defined by g = f ◦
mapF (mark, id). Using this result, we now obtain

max (≤) ◦ Λ(w ◦ dom p ◦mapT mark)
= { above }

max (≤) ◦ Λ(fst ◦ foldF g)
= { claim }

fst ◦max (≤1) ◦ Λ(foldF g)

where (≤1) :: (Weight,Class)→ (Weight,Class)→ Bool is defined by

(a1, b1) ≤1 (a2, b2)
def
= (a1 ≤ a2)

The proof of the claim is in [BdM96].
Now we can apply the thinning theorem to the expression

max (≤1) ◦ Λ(foldF g).

Theorem 6 (Thinning)

max (≤) ◦ Λ(foldF f) ⊇ max (≤) ◦ foldF g

where
g :: F (a, Set b) ; Set b
g = thin (�) ◦ Λ(f ◦mapF (id, choose))

provided that: (i) x� y ⇒ x ≤ y; and (ii) f is monotonic under �. 2

107

Here thin is defined as follows:

thin :: (a→ a→ Bool)→ (Set a ; Set a)
bs← thin (�) as ≡ bs ⊆ as ∧ (∀a ∈ as : ∃b ∈ bs : a� b)

To apply the thinning theorem, we have to find an order � which satisfies
the condition (i) and (ii) in the theorem. In this case, the following order ≤2

satisfies them.

(a1, b1) ≤2 (a2, b2)
def
= (a1 ≤ a2 ∧ b1 == b2)

Now the specification is calculated to the following form:

mmp ⊇ fst ◦max (≤1) ◦ foldF g
g = thin (≤2) ◦ Λ(f ◦mapF (id, choose))
f = 〈plusF ◦mapF (mw, fst), partF ◦mapF (id, snd)〉 ◦mapF (mark, id)

The thinning theorem says that we can compute an optimum result by
maintaining a representative number of partial solutions at each stage of
the folding process. If Class has size k, then we need keep only k partial
solutions at each stage. For the mss problem, |Class| = 3, so only three
partial solutions have to be kept.

Property by a relational fold

Properties are restricted to those which can be expressed using foldF :

p = foldF partF

This restricts properties to “suffix-closed” properties. Originally the term
“suffix closed” is used for lists. If the property p doesn’t hold for the list xs,
then p doesn’t hold for the list ys ++xs for all ys. We use the suffix-closed
for data type T , that is, if p doesn’t hold for the property p on the data x,
then p doesn’t hold for data which have x as its sub-data.

Extension of Property class

We extend properties to those which can be written as follows:

p :: T α∗ −→| Class
p = accept ◦ foldF partF

108

Here accept is a partial function which has following type:

accept :: Class −→| Class

Though we omit detail, the specification mmp can be calculated to the fol-
lowing expression:

fst ◦ dom (accept ◦ snd) ◦max (≤1) ◦ foldF g

Discussion

The derivation by relational calculus is clearer than that by functional cal-
culus because by functional calculus, essentially nondeterministic part have
to be represented by a function. So, it may seem that it may be better to
replace the proof of the optimization function opt by one using a relational
calculus. It is true that the relational calculus is clear, but it is remained to
implement the obtained relation as a function. This step is slightly compli-
cated and actually it takes about 4 pages to implement obtained result as a
function in [Bir00].

109

Chapter 8

Conclusion

In this thesis we present a new method for deriving practical linear-time algo-
rithms for maximum marking problems on recursive data structures. From a
specification represented as a functional program, our method obtains prac-
tical linear-time algorithms by deriving a catamorphism whose range size is
small. Though our method does not guarantee that the derived catamor-
phism has a range with the smallest number of elements, in many cases it
has range consisting of about 10 or 20 elements because the properties of
many problems can be described in mutumorphisms which consist of three
or four property descriptions. This means our derived linear-time algorithms
are practical in many cases. Our method also enables linear time algorithms
to be derived in a simple, systematic, and natural way, and it can flexibly
cope with modification of the specification.

Though our current focus is on well-used recursive data structures such
as lists and trees, our method should be able to deal with the graphs with
bounded tree width because a class of the graphs with bounded tree width can
be represented as a recursive data structure like that described in Chapter 2.
Our next target problems are linear-time control flow analyses for structured
procedural programs, for which the control flow graphs are known to have
bounded tree width [Tho98]. Though we currently restrict data types to
polynomial data types, we think our optimization theorem can be extended
to regular data types. Although we concentrate on the maximizing problems,
our method is easily extended for the minimization, existence and enumera-
tion problems in [BPT92].

Our method is mechanical, so it is appropriate for automatic genera-
tion. We have shown implementation of a system for automatically generat-

110

ing efficient linear time algorithms for maximum marking problems. It was
known that generation of linear time algorithms for MMP (precisely maxi-
mum weightsum problem) can be done by the method proposed by Borie et
al., [BPT92]. Though his method is theoretically appealing, it generates a
prohibitively large table and thus cannot be put to practical use. We have
shown that our system generates practical linear time algorithms by using
several examples.

Our method of course has limitations, and the most fundamental is
that tree width is bounded. The two-dimensional maximum segment sum
problem, for example, cannot be dealt with by our method because a two-
dimensional matrix corresponds to a grid graph, which will have unbounded
tree width.

111

Bibliography

[ACPS93] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and
Detlef Seese. An algebraic theory of graph reduction. Journal
of the ACM, 40(5):1134–1164, 1993.

[ADH+98] Harold Abelson, R.K. Dybvig, C.T. Haynes, G.J. Rozas,
N.I. Adams IV, D.P. Friedman, E. Kohlbecker, G.L. Steele Jr.,
D.H. Bartley, R. Halstead, D. Oxley, G.J. Sussman, G. Brooks,
C. Hanson, K.M. Pitman, and M. Wand. Revised5 report on
the algorithmic language scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algo-
rithms for NP-hard problems on graphs embedded in k-trees.
Discrete Applied Mathematics, 23:11–24, 1989.

[APT00] Bengt Aspvall, Andrzej Proskurowski, and Jan Arne Telle.
Memory requirements for table computations in partial k-tree
algorithms. Algorithmica, 27(3):382–394, 2000.

[Arn87] Stefan Arnborg. Complexity of finding embeddings in a k-
tree. SIAM Journal Algebraic Discrete Mathematics, 8:277–287,
1987.

[Arn95] Stefan Arnborg. Decomposable structures, Boolean function,
representations, and optimization. In J. Wiedermann and
P. Hájek, editors, Mathematical Foundations of Computer Sci-
ence 1995, volume 969 of Lecture Notes in Computer Science,
pages 21–36. Springer-Verlag, 1995.

112

[AwJS96] Harold Abelson and Gerald Jay Sussman with Julie Sussman.
Structure and Interpretation of Computer Programs (second
edition). MIT Press, 1996.

[BdM96] Richard Bird and Oege de Moor. Algebra of Programming.
Prentice Hall, 1996.

[Ben84] Jon Louis Bentley. Programming pearls: Algorithm design tech-
niques. Communications of the ACM, 27(9):865–871, Septem-
ber 1984.

[Bir87] Richard Bird. An introduction to the theory of lists. In Man-
fred Broy, editor, Logic of Programming and Calculi of Discrete
Design, volume F36 of NATO ASI Series, pages 5–42. Springer-
Verlag, 1987.

[Bir89] Richard Bird. Algebraic identities for program calculation. The
Computer Journal, 32(2):122–126, 1989.

[Bir98] Richard Bird. Introduction to Functional Programming using
Haskell (second edition). Prentice Hall, 1998.

[Bir00] Richard Bird. Maximum marking problems, 2000.
Available from http://www.comlab.ox.ac.uk/oucl/work/
richard.bird/publications/mmp.ps.

[BLW87] Marshall W. Bern, Eugene L. Lawler, and A. L. Wong.
Linear-time computation of optimal subgraphs of decompos-
able graphs. Journal of Algorithms, 8:216–235, 1987.

[Bod93] Hans L. Bodlaender. A tourist guide through treewidth. Acta
Cybernetica, 11:1–21, 1993.

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Auto-
matic generation of linear-time algorithms from predicate cal-
culus descriptions of problems on recursively constructed graph
families. Algorithmica, 7:555–581, 1992.

[BRS99] Sergey Brin, Rajeev Rastogi, and Kyuseok Shim. Mining op-
timized gain rules for numeric attributes. In Proceedings of

113

the fifth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’99), pages 135–144, San
Diego, CA USA, August 1999. ACM Press.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Second Edition.
MIT Press, 2001.

[Cou90a] Bruno Courcelle. Graph rewriting: An algebraic and logic ap-
proach. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, chapter 5, pages 194–242. Else-
vier Science Publishers, 1990.

[Cou90b] Bruno Courcelle. The monadic second-order logic of graphs. I.
Recognizable sets of finite graphs. Information and Computa-
tion, 85(1):12–75, March 1990.

[dM95] Oege de Moor. A generic program for sequential decision pro-
cesses. In Proceedings of the 7th International Symposium on
Programming Languages, Implementations, Logics, and Pro-
grams (PLILP’95), LNCS 982, pages 1–23, Utrecht, the Nether-
lands, September 1995.

[dMS98] Oege de Moor and Ganesh Sittampalam. Generic program
transformation. In Proceedings of the 3rd International Sum-
mer School on Advanced Functional Programming (AFP’98),
LNCS 1608, pages 116–149, Braga, Portugal, September 1998.
Springer-Verlag.

[dMS99] Oege de Moor and Ganesh Sittampalam. Higher-order match-
ing for program transformation. Theoretical Computer Science,
to appear, 1999.

[ES00] Thomas Erlebach and Frits Spieksma. Simple algorithms for
a weighted interval selection problem. In Proceedings of the
11th International Symposium on Algorithms and Computation
(ISAAC’00), LNCS 1969, pages 228–240, Taipei, Taiwan, De-
cember 2000. Springer-Verlag.

114

[FMMT96a] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and
Takeshi Tokuyama. Data mining using two-dimensional opti-
mized association rules: Scheme, algorithms, and visualization.
In Proceedings of the 1996 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’96), pages 13–23,
Montreal, Canada, June 1996. ACM Press.

[FMMT96b] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and
Takeshi Tokuyama. Mining optimized association rules for nu-
meric attributes. In Proceedings of the fifteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database sys-
tems (PODS’96), pages 182–191, Montreal, Canada, June 1996.
ACM Press.

[Fok89] Maarten M. Fokkinga. Tupling and mutumorphisms. Squig-
golist, 1(4), 1989.

[Fok92] Maarten M. Fokkinga. Law and Order in Algorithmics. PhD
thesis, University of Twente, Dept INF, Enschede, The Nether-
lands, 1992.

[GLP93] Andrew Gill, John Launchbury, and Simon Peyton Jones. A
short cut to deforestation. In Proceedings of the 6th Inter-
national Conference on Functional Programming Languages
and Computer Architecture (FPCA’93), pages 223–232, Copen-
hagen, Denmark, June 1993. ACM Press.

[Gri90] D. Gries. The maximum-segment sum problem. In E. W. Di-
jkstra, editor, Formal Development of Programs and Proofs.
Addison-Wesley, 1990.

[HITT97] Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko
Takano. Tupling calculation eliminates multiple data traversals.
In Proceedings of the 2nd ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’97), pages 164–175,
Amsterdam, The Netherlands, June 1997. ACM Press.

[HT99] Zhenjiang Hu and Masato Takeichi. Calculation carrying pro-
grams. Technical Report METR 99-07, Department of Mathe-
matical Engineering, University of Tokyo, Japan, 1999.

115

[Jeu93] Johan Jeuring. Theories for Algorithm Calculation. Ph.D the-
sis, Faculty of Science, Utrecht University, 1993.

[Kas01] Ioannins T. Kassios. Translating Borie-Parker-Tovey calculus
into mutumorphisms, 2001. submitted to Algorithmica.

[KT90] Igor Kř́ıž and Robin Thomas. Clique-sums, tree-decompositions
and compactness. Discrete Mathematics, 81:177–185, 1990.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Func-
tional programming with bananas, lenses, envelopes and barbed
wire. In Proceedings of the 5th International Conference on
Functional Programming Languages and Computer Architecture
(FPCA’91), volume 523 of Lecture Notes in Computer Science,
pages 124–144, Cambridge, Massachusetts, August 1991. ACM
Press.

[MT90] Silvano Martello and Paolo Toth. Knapsack Problems : Al-
gorithms and Computer Implementations. Wiley-Interscience
series in discrete mathematics and optimization. John Wiley &
Sons Ltd., 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen. The Definition of Standard ML - Revised. MIT Press,
1997.

[Pau96] Lawrence C. Paulson. ML for the Working Programmer (second
edition). Cambridge University Press, 1996.

[PJH99] Simon Peyton Jones and John Hughes, editors. The
Haskell 98 Report. February 1999. Available from
http://www.haskell.org/definition/.

[PP96] Albert Pettrossi and Maurizio Proietti. Rules and strategies for
transforming functional and logic programs. ACM Computing
Surveys, 28(2):360–414, June 1996.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. Algo-
rithmic aspects of tree-width. Journal of Algorithms, 7(3):309–
322, September 1986.

116

[SF93] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In
Conference on Functional Programming Languages and Com-
puter Architecture, pages 233–242, 1993.

[SHT01] Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Generation
of efficient programs for solving maximum multi-marking prob-
lems. In Walid Taha, editor, Semantics, Applications, and Im-
plementation of Program Generation (SAIG’01), volume 2196
of Lecture Notes in Computer Science, pages 72–91, Firenze,
Italy, September 2001. Springer-Verlag.

[SHTO00] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito
Ogawa. Make it practical: A generic linear-time algorithm for
solving maximum-weightsum problems. In Proceedings of the
5th ACM SIGPLAN International Conference on Functional
Programming (ICFP’00), pages 137–149, Montreal, Canada,
September 2000. ACM Press.

[SHTO01a] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito
Ogawa. Calculating linear time algorithms for solving maxi-
mum weightsum problems (in Japanese). Computer Software,
18(5):1–16, 2001.

[SHTO01b] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito
Ogawa. Derivation of linear algorithm for mining optimized
gain association rules. In 18th Conference Proceedings Japan
Society for Software Science and Technology, 2001.

[SHTO01c] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito
Ogawa. Solving a class of knapsack problems on recursive
data structures (in Japanese). Computer Software, 18(2):59–
63, 2001.

[TH00] Masato Takeichi and Zhenjiang Hu. Calculation carrying pro-
grams: How to code program transformations (invited paper).
In International Sumposium on Principles of Software Evolu-
tion (ISPSE 2000), Kanazawa, Japan, November 2000. IEEE
Press.

117

[Tho90a] Robin Thomas. A Menger-like property of tree-width: The
finite case. Journal of Combinatorial Theory, Series B, 48:67–
76, 1990.

[Tho90b] Wolfgang Thomas. Automata on infinite objects. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, chapter 4, pages 133–192. Elsevier Science Publish-
ers, 1990.

[Tho98] Mikkel Thorup. All structured programs have small tree width
and good register allocation. Information and Computation,
142:159–181, 1998.

[TNS82] Kazuhiko Takamizawa, Takao Nishizeki, and Nobuji Saito.
Linear-time computability of combinatorial problems on series-
parallel graphs. Journal of the Association for Computing Ma-
chinery, 29:623–641, 1982.

[Vis01] Eelco Visser. Stratego: A language for program transformation
based on rewriting strategies. system description of stratego 0.5.
In Rewriting Techniques and Applications (RTA’01). Springer-
Verlag, May 2001.

[Wim87] Thomas V. Wimer. Linear Algorithms on k-Terminal Graphs.
PhD thesis, Clemson University, 1987. Report No. URI-030.

[YSHT01] Tetsuo Yokoyama, Isao Sasano, Zhenjiang Hu, and Masato
Takeichi. Automatic generation of efficient programs for max-
imum multi-marking problems (in Japanese), 2001. 36th IPSJ
Special Interest Group on Programming.

118

