
Principles of Programming Languages

Small examination

Student ID: Name:

Problem 1 Illustrate the quilts represented by the following expressions (1), (2), and
(3) in the language Little Quilt.

(1) sew (turn (turn (b)), a)

(2) let

val x = turn (b)

in

sew (x,x)

end

(3) let

fun unturn (x) = turn (turn (turn (x)))

fun pile (x,y) = unturn (sew (turn (y), turn (x)))

val aa = pile (a, turn (turn (a)))

val bb = pile (unturn (b), turn (b))

in

sew (aa, bb)

end

The meaning of a, b, turn, sew are as follows. The other constructs of Little Quilt
(let expressions, val declaration, fun declaration) have the meaning explained in the
lecture.

• Expressions a and b represent the quilts in Figure 1 and Figure 2 respectively.

Figure 1: The quilt that a represents Figure 2: The quilt that b represents

• The expression turn (e) represents the quilt obtained by rotating 90 degrees to the
right the quilt represented by the expression e.

• The expression sew (e1, e2) represents the quilt that is obtained by sewing the
two quilts e1 and e2, where e1 is in the left side and e2 is in the right side, and they
must have the same height.

1



Problem 2 Answer the following problems about the control flow in the imperative
language presented in the lecture.

(1) Illustrate the control flow of the following program fragment.

if x>0 then x := x - 1

else if y>0 then y := y - 1

else y := y + 1

(2) Illustrate the control flow of the following program fragment.

x := 10;

sum := 0;

L: sum := sum + x;

x := x - 1;

if x>0 then

goto L

(3) Illustrate the control flow of the following program fragment.

while x>0 do

begin

if x=3 then

begin

x := x - 1;

continue

end;

y := y + 1;

x := x - 1

end

(4) Illustrate the control flow of the following program fragment.

while x>0 do

begin

while y>0 do

begin

if x=3 then

break;

z := z + 1;

y := y - 1

end;

x := x - 1

end

(5) How many entries and exits does the if statement (if x=3 then break;) in the
program fragment (4) have?

2



Problem 3 Derive the Hoare triples (1), (2), and (3) by using the rules presented in the
lecture.

(1) {a = 3} a := a + 1 {a = 4}

(2) {a = 3} a := a + 1; a := a + 2 {a = 6}

(3) {a = 4} if a = 4 then a := a + 2 else a := a − 3 {a = 6}

(4) {a = 5} while a > 0 do a := a − 1 {a = 0}

3



Rules presented in the lecture

Hoare logic
{P} S1 {Q} {Q} S2 {R}

{P} S1; S2 {R} (composition rule)

{P ∧ E} S1 {Q} {P ∧ ¬ E} S2 {Q}
{P} if E then S1 else S2 {Q} (conditional rule)

{P ∧ E} S {P}
{P} while E do S {P ∧ ¬ E} (while rule)

{Q[E/x]} x := E {Q} (assignment axiom)

P ⇒ P ′ {P ′} S {Q′} Q′ ⇒ Q

{P} S {Q} (consequence rule)

4


