Principles of Programming Languages

Small examination 2

Student ID: Name:

Problem 1 Show the type consistency of the following program fragment, which is
written in the subset of C language presented in the lecture, according to (1) and (2).

int *p;
int x[3];

P = x;

(1) Rewrite the variable declarations int *p; and int x[3]; in the postfix notation

presented in the lecture.

(2) Show the type consistency of the assignment expression p=x by applying the infer-
ence rules to the declarations of p and x in the postfix notation obtained in (1).

Problem 2 A lambda expression (Az. A\y. x) ((Az. z) w) can be transformed to (A\y. w)
by applying the (3 reductions. Write the each step of the § reductions. (Although there
are more than one sequences of 3 reductions, write one of them.)

Problem 3 Write the output to the display when executing the following program in

C++.
. . N
#include <stdio.h> int main (void) {
class Shape { Shape *s;
public: s = new Box ();
virtual void draw (void) { s->draw() ;
printf ("Shape\n"); return O;
} }
}; _ /
class Box : public Shape {
void draw (void) {
printf ("Box\n");
}
3
o /
Problem 4

Show the meaning of the following programs (1) and (2) by using the rules presented in
the lecture. Note that the programs are in the small subset of C presented in the lecture.
Let the states before executing the programs both to be o = {(X, 3), (Y, 1),(Z,0)}.

(1) z=(X+4);

(2) while(M){Y=(Y-1);%}

Rules presented in the lecture Typing rules

e Rules for function calls, pointers, arrays

e:7n] e:7() e: T e : 7n]

eli] : 7 e(): 7 ke:T e:1&

e Rule for assignment operator =, where e is an l-value expresssion and not a constant.

e Rule for the & operator where the outermost part of 7 is not &.

e:T e: & e:7x € :7&

&e: & xe:T e=¢c :7&

Rules for lambda calculus

e 3 reductions
(Az.M) N — MIN/x]

MTN MTN MTN

Ax. M T) AN MP T) NP PM T) PN

e Substitutions

¢[N/x] = ¢
z[N/z] = N
z[NJy] = = (z#y)
(.M if 7 =y
(M\y.M)[N/z] = Ay.(M[N/x]) if © £y, y¢ FV(N)

Az (M[z/y)IN/xl) if x#y, z# 2, ye FV(N),
2 ¢ FV(M), z ¢ FV(N)

(MM)[NJ2] = (My[N/a))(My[N/a])
o Free variables
FV(e) = {)
FV(z) = {a}

FV(QAe.M) = FV(M)\ {z}

Operational semantics for the small subset of C

e Rules for arithmetic expressions

— Sequences of numbers: < n,o > — m where m is an integer represented by

the sequence of numbers n in the decimal representation.
— Variables: < z,0 > — o(x)
— Addition:

<a1,0 > —myp <a2,0 > — My
<(CL1+CI2),O’>—> m

(m is the sum of m; and ms.)

— Subtraction:

<a1,0>—mp < 02,0 > — My
< (ag —ag),o0 > —m

(m is the difference of m; and my.)

— Multiplication:

<ay,0>—m; <a2,0 > — My
< (ay xay),0 > —m

(m is the product of m; and ms.)

e Rules for statements

— Assignments:
<a,0>—m

<r=a;,0>— olm/x]
where o[m/x] is defined as follows.

B m ify==x
(olm/2])(v) —{ N

— Sequences:

<C,0>— 01 <Cy,01 > — 09
< €1 Co,0 > — 09

— while statements:
<a,0>—0

< while (a) {c},0 > — o

<a,0>—m <co>— o <while(a){c},o0>— 09
< while (a) {c},0 > — 09

(if m #0)

