Principles of Programming Languages
Answers for small examination 1

Problem 1 Illustrate the quilts represented by the following expressions
(1), (2), and (3) in the language Little Quilt.

(1) sew (turn (turn (b)), a)

5

(2) let
val x = turn (b)
in
sew (x,x)
end
(3) let

fun unturn (x) = turn (turn (turn (x)))

fun pile (x,y) = unturn (sew (turn (y), turn (x)))
val aa = pile (a, turn (turn (a)))

val bb = pile (unturn (b), turn (b))

in
sew (aa, bb)
end

\\
N

The meaning of a, b, turn, sew are as follows. The other constructs of
Little Quilt (let expressions, val declarations, fun declarations) have the
meaning explained in the lecture.

e Expressions a and b represent the quilts in Figure 1 and Figure 2 re-
spectively.

e The expression turn (e) represents the quilt obtained by rotating 90
degrees to the right the quilt represented by the expression e.

e The expression sew (e, ey) represents the quilt that is obtained by
sewing the two quilts e; and ey, where e; is in the left side and e5 is in
the right side, and they must have the same height.

1

~

Figure 1: The quilt that a repre- Figure 2: The quilt that b repre-
sents sents

Problem 2 Answer the following problems about the control flow in the
imperative language presented in the lecture

(1) Tlustrate the control flow of the following program fragment.
if x>0 then x (= x - 1

else if y>0 then y =y - 1
elsey :=y + 1

FT x:=x-1

(2) Illustrate the control flow of the following program fragment.

while x>0 do

begin
if x=3 then
begin
x :=x - 1;
continue
end;
yi=y+1
x :=x -1
end

FT
F T
x:=x-1
L
y:=y+l
|
x:=x-1
|

Problem 3
Derive the Hoare triples (1), (2), and (3) by using the rules presented in
the lecture.

(1) {a=3}a:=a+1{a=4}

(assign)

a=3=a+1=4 {a+1=4}a:=a+1{a=4} a=4=a=4

{a=3}a:=a+1{a=4}

(conseq)

As I said in the lecture, the logical expression a = 4 = a = 4 in the
above proof tree may be omitted in this class as follows.

a=3=a+1=4 {at+1=4}a:=a+1{a=4} (assign)

{a=3}a:=a+1{a=4}

(conseq)

(2) {a=3}a=a+1la:=a+2 {a=06}

(assign) (assign)

a=3=a+1=4 {a+1=4}a:=a+1{a=4} a=4=a+2=6 {a+2=6}a:=a+2 {a=06}
{a=3}a:=a+1{a=4} {a=4}a:=a+2 {a=6}
{a=3}ta:=a+1l;a:=a+2 {a =6}

(conseq) (conseq)

(composition)

In this proof, I omitted a =4 = a =4 and a = 6 = a = 6 in the
applications of the consequence rule.

(3) {x =5} whilez >0doz:=x—1 {z =0}

Due to space restriction, I write the proof tree by separating it into two
parts.

(I write this part below.)
z=5=>2>0 {z>0}whilez>0doz:=2z—1{z>0A-2>0} 2>0A-2>0=>2=0
{z =5} whilez >0doz:=2—1 {z =0}

(conseq)

t20Ax>0=>2-120 {r—-1>0tz:=2—1{z >0} (assign)

{r>0Az>0} z:=2—1{x >0}
{r >0} whilez >0doz:=2z—1{x>0A- x>0}

r>0=xz>0

(conseq)

(while)

3

In the above proof tree, the logical expression x > 0 = x > 0 may be
omitted as follows.

t>0Az>0=2—-1>0 {x—1>0}2:=xz—1{z >0} (assign)

{r>0A2 >0} 2:=2—1{zx >0}
{r >0} whilex >0doz:=2—1{z>0A-z>0}

(conseq)
(while)

[abbreviated the assignment axiom as assign, the consequence rule as conseq,
the while rule as while, and the composition rule as composition.

Problem 4

Show the output produced by executing the following Pascal program.
When the keyword var is attached to a formal parameter, it designates the
parameter as call-by-reference. The procedure writeln writes out to the
standard output the value of the parameter and a new line character.

program test; begin
var x : integer; X := 3;
var y : integer; y = 4;
procedure swap swap (x,y);
(var x: integer; writeln (x);
var y : integer); writeln (y)
var z : integer; end.
begin
Z 1=X; X :=Yy; y =2
end;
4
3
Problem 5

Show the output produced by executing the following Pascal program.
Note that Pascal is statically (lexically) scoped.

program P; procedure D; begin
var n : char; var n : char; n :=’L";
procedure W; begin W;
begin n :="’D’; D
writeln(n) W end.
end; end;
L
L
Problem 6

Show the meaning of the following programs (1) and (2) by using the rules
presented in the lecture. Note that the programs are in the small subset of C

presented in the lecture. Let the states before executing the programs both
to be 0 = {(X,3),(Y,1),(Z,0)}.

(1) 2
< 2,0 >— 2

So in the state o, executing the program 2 results in 2.

(2) ((2+3)%X)
<2,0>—2 <3,0>—3
<(2+43),0>—5 <Xo0>—>3
<((2+4+3)*X),0 >— 15

So in the state o, executing the program ((2+3)*X) results in 15.

