
Principles of Programming Languages

Small examination

Student ID: Name:

Problem 1 Illustrate the quilts represented by the following expressions (1), (2), and
(3) in the language Little Quilt.

(1) sew (turn (turn (b)), a)

(2) let

val x = turn (b)

in

sew (x,x)

end

(3) let

fun unturn (x) = turn (turn (turn (x)))

fun pile (x,y) = unturn (sew (turn (y), turn (x)))

val aa = pile (a, turn (turn (a)))

val bb = pile (unturn (b), turn (b))

in

sew (aa, bb)

end

The meaning of a, b, turn, sew are as follows. The other constructs of Little Quilt
(let expressions, val declaration, fun declaration) have the meaning explained in the
lecture.

• Expressions a and b represent the quilts in Figure 1 and Figure 2 respectively.

Figure 1: The quilt that a represents Figure 2: The quilt that b represents

• The expression turn (e) represents the quilt obtained by rotating 90 degrees to the
right the quilt represented by the expression e.

• The expression sew (e1, e2) represents the quilt that is obtained by sewing the
two quilts e1 and e2, where e1 is in the left side and e2 is in the right side, and they
must have the same height.

Problem 2 Answer the following problems about the control flow in the imperative
language presented in the lecture.

1



(1) Illustrate the control flow of the following program fragment.

if x>0 then x := x - 1

else if y>0 then y := y - 1

else y := y + 1

(2) Illustrate the control flow of the following program fragment.

while x>0 do

begin

if x=3 then

begin

x := x - 1;

continue

end;

y := y + 1;

x := x - 1

end

Problem 3
Derive the Hoare triples (1), (2), and (3) by using the rules presented in the lecture.

(1) {a = 3} a := a + 1 {a = 4}

(2) {a = 3} a := a + 1; a := a + 2 {a = 6}

(3) {x = 5} while x > 0 do x := x − 1 {x = 0}

2



Problem 4
Show the output produced by executing the following Pascal program. When the

keyword var is attached to a formal parameter, it designates the parameter as call-by-
reference. The procedure writeln writes out to the standard output the value of the
parameter and a new line character.

program test;

var x : integer;

var y : integer;

procedure swap

(var x: integer;

var y : integer);

var z : integer;

begin

z := x; x := y; y := z

end;

begin

x := 3;

y := 4;

swap (x,y);

writeln (x);

writeln (y)

end.

Problem 5
Show the output produced by executing the following Pascal program. Note that

Pascal is statically (lexically) scoped.

program P;

var n : char;

procedure W;

begin

writeln(n)

end;

procedure D;

var n : char;

begin

n := ’D’;

W

end;

begin

n := ’L’;

W;

D

end.

Problem 6
Show the meaning of the following programs (1) and (2) by using the rules presented in

the lecture. Note that the programs are in the small subset of C presented in the lecture.
Let the states before executing the programs both to be σ = {(X, 3), (Y, 1), (Z, 0)}.

(1) Z=(X+4);

(2) while(Y){Y=(Y-1);}

3



Rules presented in the lecture

Hoare logic
{P} S1 {Q} {Q} S2 {R}

{P} S1; S2 {R} (composition rule)

{P ∧ E} S1 {Q} {P ∧ ¬ E} S2 {Q}
{P} if E then S1 else S2 {Q} (conditional rule)

{P ∧ E} S {P}
{P} while E do S {P ∧ ¬ E} (while rule)

{Q[E/x]} x := E {Q} (assignment axiom)

P ⇒ P ′ {P ′} S {Q′} Q′ ⇒ Q

{P} S {Q} (consequence rule)

Operational semantics for the small subset of C

• Rules for arithmetic expressions

– Sequences of numbers: < n, σ > → m where m is an integer represented by
the sequence of numbers n in the decimal representation.

– Variables: < x, σ > → σ(x)

– Addition:
< a1, σ > → m1 < a2, σ > → m2

< (a1 + a2), σ > → m
(m is the sum of m1 and m2.)

– Subtraction:
< a1, σ > → m1 < a2, σ > → m2

< (a1 − a2), σ > → m
(m is the difference of m1 and m2.)

– Multiplication:

< a1, σ > → m1 < a2, σ > → m2

< (a1 ∗ a2), σ > → m
(m is the product of m1 and m2.)

• Rules for statements

– Assignments:
< a, σ > → m

< x = a; , σ > → σ[m/x]

where σ[m/x] is defined as follows.

(σ[m/x])(y) =

{
m if y = x

σ(y) if y 6= x

– Sequences:

< c1, σ > → σ1 < c2, σ1 > → σ2

< c1 c2, σ > → σ2

– while statements:
< a, σ > → 0

< while (a) {c}, σ > → σ

< a, σ > → m < c, σ > → σ1 < while (a) {c}, σ1 > → σ2

< while (a) {c}, σ > → σ2
(if m 6= 0)

4


