Supplement 9:

A derivation of a step in the proof of Triangle inequality

Isao Sasano

This material shows the following step in the proof of Triangle inequality by using the axioms for inner product.

$$
(\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{u}+\boldsymbol{v})=(\boldsymbol{u}, \boldsymbol{u})+2(\boldsymbol{u}, \boldsymbol{v})+(\boldsymbol{v}, \boldsymbol{v})
$$

The axioms for inner product are as follows. Let the inner procudt space be \mathcal{L}.

1. Positive definiteness:
$\forall \boldsymbol{u} \in \mathcal{L} .(u, u) \geq 0$. The equality $(\boldsymbol{u}, \boldsymbol{u})=0$ holds iff $\boldsymbol{u}=\mathbf{0}$.
2. Symmetry:
$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{L} .(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{v}, \boldsymbol{u})$.
3. Linearity:
$\forall c_{1}, c_{2} \in \mathbb{R} \wedge \forall \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{v} \in \mathcal{L} .\left(c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}, \boldsymbol{v}\right)=c_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{v}\right)+c_{2}\left(\boldsymbol{u}_{2}, \boldsymbol{v}\right)$.
We derive RHS from LHS as follows.

$$
\begin{aligned}
& =\frac{(\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{u}+\boldsymbol{v})}{\{\text { linearity }\}} \\
& =\frac{(\boldsymbol{u}, \boldsymbol{u}+\boldsymbol{v})}{\{\text { symmetry }\}} \\
& (\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{u})+(\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{v}) \\
& =\{\text { linearity }\} \\
& (\boldsymbol{u}, \boldsymbol{u})+\underline{(\boldsymbol{v}, \boldsymbol{u})}+(\boldsymbol{u}, \boldsymbol{v})+(\boldsymbol{v}, \boldsymbol{v}) \\
& =\quad\{\text { symmetry }\} \\
& (\boldsymbol{u}, \boldsymbol{u})+(\boldsymbol{u}, \boldsymbol{v})+(\boldsymbol{u}, \boldsymbol{v})+(\boldsymbol{v}, \boldsymbol{v}) \\
& =\{\text { arithmetic of real numbers }\} \\
& (\boldsymbol{u}, \boldsymbol{u})+2(\boldsymbol{u}, \boldsymbol{v})+(\boldsymbol{v}, \boldsymbol{v})
\end{aligned}
$$

