Drawing graphs for Fourier series by gnuplot

Isao Sasano

In this document I explain how to draw graphs for Fourier series by gnuplot. By Fourier-series-expanding the function

$$
f(x)= \begin{cases}1 & 0 \leq x \leq \pi \\ -1 & -\pi \leq x<0\end{cases}
$$

on the range $[-\pi, \pi]$ we obtain

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{4}{(2 k-1) \pi} \sin ((2 k-1) x)
$$

We can draw a graph for a partial summation up to the n-th term by gnuplot as follows. Firstly we represent the k-th term by a function of two variables x and k as follows.

$$
\mathrm{t}(\mathrm{x}, \mathrm{k})=4 /(\mathrm{pi} *(2 * \mathrm{k}-1)) * \sin ((2 * \mathrm{k}-1) * \mathrm{x})
$$

We can represent the partial sum up to the n-th term by defining a function recursively as follows.

```
series (x,n) = (n>0 ? t(x,n) + series (x,n-1) : 0)
```

The given function $f(x)$ can be written as follows.

$$
f(x)=(x>0 \text { ? } 1:-1)
$$

By using the functions series, t, and f, we can draw a partial sum up to, for example, the fifth term as follows.

```
set xrange [-pi:pi]
plot series(x,5), f(x)
```

I put the above commands in the file kukei.txt and put on my lecture page. We can load the file to the gnuplot by using the redirect as follows.

```
$ gnuplot < kukei.txt
```

Of course you can invoke the gnuplot command and then copy-and-paste the commands in the file kukei.txt. If you would like to put the resulting graph in a file, remove the two occurrences of \# in the file kukei.txt (in the case of eps file). You can draw a graph for Fourier series of some other function by changing the definition of the functions t and series for the case where $n=0$.

Note The function $f(x)$ and the above series do not have a same value at the points of discontinuity. The relationship between the function $f(x)$ and the Fourier series of $f(x)$ is as follows.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{4}{(2 k-1) \pi} \sin ((2 k-1) x)= \begin{cases}f(x) & 0<x<\pi \\ 0 & x=-\pi, 0, \pi \\ f(x) & -\pi<x<0\end{cases}
$$

(This is out of the scope of the class.)

