Exercise 13-1

Isao Sasano

Exercise The Fourier series f(x) = x on the range $[-\pi, \pi]$ is

$$\sum_{k=1}^{\infty} -\frac{2}{k} (-1)^k \sin kx.$$
 (1)

Rewrite this series in the form of a linear combination of complex exponential functions $\{e^{ikx} | k \in \mathbb{Z}\}$.

Solution 1 By the Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2}$$

the following equation holds.

$$e^{-i\theta} = e^{i(-\theta)}$$

= $\cos(-\theta) + i\sin(-\theta)$
= $\cos\theta - i\sin\theta$ (3)

By adding the equations (2) and (3) we obtain the following equation.

$$e^{i\theta} + e^{-i\theta} = 2\cos\theta$$

By subtracting the equation (3) from (2) we obtain the following equation.

$$e^{i\theta} - e^{-i\theta} = 2i\sin\theta$$

So we obtain the following equations.

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
(4)

By setting $\theta = kx$ in (4) we obtain

$$\sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}$$

By substituting RHS of this equation for LHS of this equation in (1) we obtain \sim

$$\sum_{k=1}^{\infty} -\frac{2}{k} (-1)^k \frac{e^{ikx} - e^{-ikx}}{2i}.$$

We rewrite this series as follows.

$$\begin{split} \sum_{k=1}^{\infty} -\frac{2}{k} (-1)^k \frac{e^{ikx} - e^{-ikx}}{2i} &= \sum_{k=1}^{\infty} -\frac{1}{k} (-1)^k \frac{e^{ikx} - e^{-ikx}}{i} \\ &= \sum_{k=1}^{\infty} -\frac{1}{k} (-1)^k (-i) (e^{ikx} - e^{-ikx}) \\ &= \sum_{k=1}^{\infty} \frac{1}{k} (-1)^k i (e^{ikx} - e^{-ikx}) \\ &= \sum_{k=1}^{\infty} \left\{ \frac{1}{k} (-1)^k i e^{ikx} - \frac{1}{k} (-1)^k i e^{-ikx} \right\} \\ &= \sum_{k=1}^{\infty} \left\{ \frac{1}{k} (-1)^k i e^{ikx} - \frac{1}{k} (-1)^k i e^{i(-k)x} \right\} \\ &= \sum_{k=1}^{\infty} \left\{ \frac{1}{k} (-1)^k i e^{ikx} + \frac{1}{-k} (-1)^k i e^{i(-k)x} \right\} \\ &= \sum_{k=1}^{\infty} \left\{ \frac{1}{k} (-1)^k i e^{ikx} + \frac{1}{-k} (-1)^{-k} i e^{i(-k)x} \right\} \\ &= \sum_{k=1}^{\infty} c_k e^{ikx} \end{split}$$

Here c_k is defined as follows.

$$c_k = \begin{cases} \frac{1}{k} (-1)^k i & k > 0\\ 0 & k = 0\\ \frac{1}{k} (-1)^k i & k < 0 \end{cases}$$

Note that $\sum_{k=-\infty}^{\infty} c_k e^{ikx}$ is defined as follows. $\sum_{k=-\infty}^{\infty} c_k e^{ikx} = \lim_{n \to \infty} \sum_{k=-n}^n c_k e^{ikx}$

Solution 2 Here we calculate the series directly. Assume the following equation holds. (Note that there are no coefficients $c_{-n}, \ldots, c_0, \ldots, c_n$ that satisfy the equation, but it's ok.)

$$f(x) = \sum_{l=-n}^{n} c_l e^{ilx}$$

Multiply e^{-ikx} to the both sides of this equation and integrate them on the range $[-\pi, \pi]$.

$$\int_{-\pi}^{\pi} f(x)e^{-ikx} dx = \int_{-\pi}^{\pi} e^{-ikx} \sum_{l=-n}^{n} c_l e^{ilx} dx$$
$$= \int_{-\pi}^{\pi} \sum_{l=-n}^{n} c_l e^{ilx} e^{-ikx} dx$$
$$= \int_{-\pi}^{\pi} \sum_{l=-n}^{n} c_l e^{i(l-k)x} dx$$
$$= \sum_{l=-n}^{n} \int_{-\pi}^{\pi} c_l e^{i(l-k)x} dx$$
$$= \int_{-\pi}^{\pi} c_k e^0 dx$$
$$= \int_{-\pi}^{\pi} c_k dx$$
$$= 2\pi c_k$$

So we obtain c_k as follows.

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \mathrm{d}x$$

When $k \neq 0$ we calculate c_k as follows.

$$c_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-ikx} dx$$

$$= \frac{1}{2\pi} \left\{ \left[x \frac{e^{-ikx}}{-ik} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{-ikx}}{-ik} dx \right\}$$

$$= \frac{1}{2\pi} \cdot \frac{\pi e^{-ik\pi} - (-\pi) e^{ik\pi}}{-ik}$$

$$= \frac{1}{2\pi} \cdot \frac{\pi (-1)^{k} + \pi (-1)^{k}}{-ik}$$

$$= \frac{1}{2\pi} \cdot \frac{2\pi (-1)^{k}}{-ik}$$

$$= \frac{1}{2\pi} \cdot \frac{2\pi (-1)^{k}}{-ik}$$

$$= \frac{(-1)^{k}}{-ik}$$

$$= \frac{1}{k} (-1)^{k} i$$

When k = 0 we calculate c_0 as follows.

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^0 dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx$$
$$= 0$$

So we obtain the series

$$\sum_{k=-n}^{n} c_k e^{ikx}$$

where

$$c_k = \begin{cases} \frac{1}{k} (-1)^k i & k \neq 0 \\ 0 & k = 0. \end{cases}$$

The Fourier series is the limit of the above linear combination as \boldsymbol{n} goes to infinity.

$$\lim_{n \to \infty} \sum_{k=-n}^{n} c_k e^{ikx} = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$

This is the same as the series obtained in Solution 1.

Comment Here we rewrite the series back to the series (1).

$$\begin{split} \sum_{k=-\infty}^{\infty} c_k e^{ikx} &= \lim_{n \to \infty} \sum_{k=-n}^n c_k e^{ikx} \\ &= \lim_{n \to \infty} \left\{ \sum_{k=1}^n c_k e^{ikx} + \sum_{k=-1}^n c_k e^{ikx} \right\} + c_0 e^0 \\ &= \lim_{n \to \infty} \left\{ \sum_{k=1}^n c_k e^{ikx} + \sum_{k=1}^n c_{-k} e^{i(-k)x} \right\} \\ &= \lim_{n \to \infty} \sum_{k=1}^n \left\{ c_k e^{ikx} + c_{-k} e^{i(-k)x} \right\} \\ &= \lim_{n \to \infty} \sum_{k=1}^n \left\{ \frac{1}{k} (-1)^k i e^{ikx} + \frac{1}{-k} (-1)^{-k} i e^{i(-k)x} \right\} \\ &= \sum_{k=1}^\infty \left\{ \frac{1}{k} (-1)^k i (\cos kx + i \sin kx) - \frac{1}{k} (-1)^k i (\cos kx - i \sin kx) \right\} \\ &= \sum_{k=1}^\infty \left\{ \frac{1}{k} (-1)^k i \cos kx - \frac{1}{k} (-1)^k \sin kx - \frac{1}{k} (-1)^k \sin kx - \frac{1}{k} (-1)^k i \cos kx - \frac{1}{k} (-1)^k \sin kx \right\} \\ &= \sum_{k=1}^\infty -\frac{2}{k} (-1)^k \sin kx \end{split}$$

This is the series (1).