
Classification of quadratic functions

of two variables

Isao Sasano

Caution This material concerns topics that are out of the scope of this class.

This is for only those who are interested in classification of quadratic functions of

two variables. It is required for you to have learned eigenvalues, eigenvectors, and

diagonalizing matrices by orthogonal matrices.

1 Classification of J in Exercise 1

The function J for measuring the distance between the line and the points in

Exercise 1

J =
1

2

3∑
i=1

(axi + b − yi)
2

is the following quadratic function of two variables a and b (cf. Solution 2 in

Exercise 1).

J =
1

2
{5a2 + 3b2 + 6ab + 8a + 2b + 5}

As I mentioned in the lecture, quadratic functions of two variables are classified into

elliptic, parabolic, and hyperbolic types. In this material, we show the function J

is elliptic. We let the part other than the
1

2
in J be f(a, b).

f(a, b) = 5a2 + 3b2 + 6ab + 8a + 2b + 5

The subexpression 5a2 + 3b2 + 6ab, which is called to have a quadratic form, can

be represented by using matrices and vectors as follows.

(
a b

)( 5 3

3 3

)(
a

b

)

The subexpression 8a+2b can be represented by using row and column vectors as

follows. (
8 2

)( a

b

)
Thus the function f(a, b) can be represented as follows.

f(a, b) =
(

a b
)( 5 3

3 3

)(
a

b

)
+
(

8 2
)( a

b

)
+ 5



We let the matrix

(
5 3

3 3

)
be A. We have selected A to be a symmetric matrix.

Quadratic forms of a and b (terms of a2, b2, and ab) can always be represented by

using symmetric matrices as in the above. The above expression can be rewritten

by using A as follows.

f(a, b) =
(

a b
)
A

(
a

b

)
+
(

8 2
)( a

b

)
+ 5

We then diagonalize the matrix A by using orthogonal matrices. For that pur-

pose we calculate x, y, and λ that satisfies the equation

A

(
x

y

)
= λ

(
x

y

)

and the inequation (
x

y

)
6=
(

0

0

)
.

The equation A

(
x

y

)
= λ

(
x

y

)
can be represented by using the identity matrix

I as follows.

(λI − A)

(
x

y

)
=

(
0

0

)
Since

|λI − A| = 0

the following equation holds.

(λ − 5)(λ − 3) − 9 = 0

By solving this we obtain

λ = 4 ±
√

10.

When λ = 4 +
√

10, (
x

y

)
=

(
3

−1 +
√

10

)
is obtained as a solution and by normalizing this vector we obtain(

x

y

)
=

1√
20 − 2

√
10

(
3

−1 +
√

10

)
.

When λ = 4 −
√

10, (
x

y

)
=

(
3

−1 −
√

10

)
is obtained as a solution and by normalizing this vector we obtain(

x

y

)
=

1√
20 + 2

√
10

(
3

−1 −
√

10

)
.

2



We make a matrix consisting of the above two unit vectors as follows.

U =

 3√
20−2

√
10

3√
20+2

√
10

−1+
√

10√
20−2

√
10

−1−
√

10√
20+2

√
10


Note that this matrix U is a orthogonal matrix. By using the matrix U , the

following equation holds.

A = U

(
4 +

√
10 0

0 4 −
√

10

)
UT

Here we write the transposed matrix of U as UT. By letting λ1 = 4 +
√

10 and

λ2 = 4 −
√

10 the above equation can be rewritten as follows.

A = U

(
λ1 0

0 λ2

)
UT

Note that the following equation also holds.

UTAU =

(
λ1 0

0 λ2

)

By letting (
a′

b′

)
= UT

(
a

b

)
,

since U is a orthogonal matrix, the following equation holds.

U

(
a′

b′

)
=

(
a

b

)

Thus the quadratic form 5a2 + 3b2 + 6ab can be rewritten as follows.

5a2 + 3b2 + 6ab =
(

a b
)( 5 3

3 3

)(
a

b

)

=
(

a b
)
A

(
a

b

)

=

((
a

b

)
, A

(
a

b

))
(obtained by representing a product of row and column

vectors by an inner product)

=

(
U

(
a′

b′

)
, AU

(
a′

b′

))

=

((
a′

b′

)
, UTAU

(
a′

b′

))
(obtained by the equality (Ax, y) = (x,ATy))
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=

((
a′

b′

)
,

(
λ1 0

0 λ2

)(
a′

b′

))

=

((
a′

b′

)
,

(
λ1a

′

λ2b
′

))
= λ1a

′2 + λ2b
′2

We call the obtained expression λ1a
′2 + λ2b

′2 the normal form of the quadratic

form 5a2 + 3b2 + 6ab.

The subexpression 8a + 2b can be rewritten as follows.

8a + 2b =
(

8 2
)( a

b

)

=
(

8 2
)
U

(
a′

b′

)

=
(

8 2
) 3√

20−2
√

10

3√
20+2

√
10

−1+
√

10√
20−2

√
10

−1−
√

10√
20+2

√
10

( a′

b′

)

=
(

8 2
) 3√

20−2
√

10
a′ + 3√

20+2
√

10
b′

−1+
√

10√
20−2

√
10

a′ + −1−
√

10√
20+2

√
10

b′


=

24√
20 − 2

√
10

a′ +
24√

20 + 2
√

10
b′ +

−2 + 2
√

10√
20 − 2

√
10

a′ +
−2 − 2

√
10√

20 + 2
√

10
b′

=
22 + 2

√
10√

20 − 2
√

10
a′ +

22 − 2
√

10√
20 + 2

√
10

b′

So the function f(a, b) can be rewritten as follows.

f(a, b) = λ1a
′2 + λ2b

′2 +
22 + 2

√
10√

20 − 2
√

10
a′ +

22 − 2
√

10√
20 + 2

√
10

b′ + 5

By completing the squares with respect to a′ and b′ we obtain

f(a, b) = λ1

a′ +
11 +

√
10

λ1

√
20 − 2

√
10

2

+ λ2

b′ +
11 −

√
10

λ2

√
20 + 2

√
10

2

+
1

6
.

Since J =
1

2
f(a, b) we obtain

J =
λ1

2

a′ +
11 +

√
10

λ1

√
20 − 2

√
10

2

+
λ2

2

b′ +
11 −

√
10

λ2

√
20 + 2

√
10

2

+
1

12
.

Since λ1 > 0 and λ2 > 0,
λ1

2
> 0 and

λ2

2
> 0 hold and thus the function J is

elliptic. So when (
a′

b′

)
=

 − 11+
√

10

λ1

√
20−2

√
10

− 11−
√

10

λ2

√
20+2

√
10
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J takes a minimum value of
1

12
. Since

(
a

b

)
= U

(
a′

b′

)
we obtain

(
a

b

)
=

 3√
20−2

√
10

3√
20+2

√
10

−1+
√

10√
20−2

√
10

−1−
√

10√
20+2

√
10


 − 11+

√
10

λ1

√
20−2

√
10

− 11−
√

10

λ2

√
20+2

√
10


=

(
−3

2
7
6

)
.

So when a = −3

2
and b =

7

6
the function J takes a minimum value of

1

12
.

Note The function J is obtained by linear transforming the elliptic quadratic

function of two variables
λ1

2
a2 +

λ2

2
b2

by using the matrix UT, which represents a rotation, and parallel shifting −3

2
in

the a-axis,
7

6
in the b-axis, and

1

12
in the J-axis.

2 Classification of quadratic two variable func-

tions

Here we classify quadratic two variable functions of the following form.

f(x, y) = ax2 + by2 + cxy + dx + ey + f

The subexpression ax2 + by2 + cxy, which is called to have a quadratic form, can

be represented by using matrices and vectors as follows.

(
x y

)( a 1
2
c

1
2
c b

)(
x

y

)

The subexpression dx + ey can be represented by using row and column vectors

as follows. (
d e

)( x

y

)

Thus the function f(x, y) can be represented as follows.

f(x, y) =
(

x y
)( a 1

2
c

1
2
c b

)(
x

y

)
+
(

d e
)( x

y

)
+ f

We let the matrix

(
a 1

2
c

1
2
c b

)
be A. We have selected A to be a symmetric matrix.

Quadratic forms of x and y (terms of x2, y2, and xy) can always be represented by
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using symmetric matrices as in the above. The above expression can be rewritten

by using A as follows.

f(x, y) =
(

x y
)
A

(
x

y

)
+
(

d e
)( x

y

)
+ f

We then diagonalize the matrix A by using orthogonal matrices. For that pur-

pose we calculate x, y, and λ that satisfies the equation

A

(
x

y

)
= λ

(
x

y

)

and the inequation (
x

y

)
6=
(

0

0

)
.

The equation A

(
x

y

)
= λ

(
x

y

)
can be represented by using the identity matrix

I as follows.

(λI − A)

(
x

y

)
=

(
0

0

)

Since

|λI − A| = 0

the following equation holds.

(λ − a)(λ − b) − 1

4
c2 = 0

By solving this we obtain

λ =
a + b ±

√
(a − b)2 + c2

2
.

We let

λ1 =
a + b +

√
(a − b)2 + c2

2

λ2 =
a + b −

√
(a − b)2 + c2

2
.

As for λ1, (
x

y

)
=

(
1
2
c

λ1 − a

)

is obtained as a solution and by normalizing this vector we obtain(
x

y

)
=

1√
1
4
c2 + (λ1 − a)2

(
1
2
c

λ1 − a

)
.
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As for λ2, (
x

y

)
=

(
1
2
c

λ2 − a

)

is obtained as a solution and by normalizing this vector we obtain(
x

y

)
=

1√
1
4
c2 + (λ2 − a)2

(
1
2
c

λ2 − a

)
.

We make a matrix consisting of the above two unit vectors as follows.

U =


1
2
c√

1
4
c2+(λ1−a)2

1
2
c√

1
4
c2+(λ2−a)2

λ1−a√
1
4
c2+(λ1−a)2

λ2−a√
1
4
c2+(λ2−a)2


Note that this matrix U is a orthogonal matrix. By using the matrix U , the

following equation holds.

A = U

(
λ1 0

0 λ2

)
UT

Here we write the transposed matrix of U as UT. Note that the following equation

also holds.

UTAU =

(
λ1 0

0 λ2

)

By letting (
x′

y′

)
= UT

(
x

y

)
,

since U is a orthogonal matrix, the following equation holds.

U

(
x′

y′

)
=

(
x

y

)

Thus the quadratic form ax2 + by2 + cxy can be rewritten as follows.

ax2 + by2 + cxy =
(

x y
)
A

(
x

y

)

=

((
x

y

)
, A

(
x

y

))
(obtained by representing a product of row and column

vectors by an inner product)

=

(
U

(
x′

y′

)
, AU

(
x′

y′

))

=

((
x′

y′

)
, UTAU

(
x′

y′

))
(obtained by the equality (Ax, y) = (x,ATy))
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=

((
x′

y′

)
,

(
λ1 0

0 λ2

)(
x′

y′

))

=

((
x′

y′

)
,

(
λ1x

′

λ2y
′

))
= λ1x

′2 + λ2y
′2

We call the obtained expression λ1x
′2 + λ2y

′2 the normal form of the quadratic

form ax2 + by2 + cxy.

The subexpression dx + ey can be rewritten as follows.

dx + ey =
(

d e
)( x

y

)

=
(

d e
)
U

(
x′

y′

)

=
(

d e
)

1
2
c√

1
4
c2+(λ1−a)2

1
2
c√

1
4
c2+(λ2−a)2

λ1−a√
1
4
c2+(λ1−a)2

λ2−a√
1
4
c2+(λ2−a)2

( x′

y′

)

=
(

d e
)

1
2
c√

1
4
c2+(λ1−a)2

x′ +
1
2
c√

1
4
c2+(λ2−a)2

y′

λ1−a√
1
4
c2+(λ1−a)2

x′ + λ2−a√
1
4
c2+(λ2−a)2

y′


=

1
2
cd√

1
4
c2 + (λ1 − a)2

x′ +
1
2
cd√

1
4
c2 + (λ2 − a)2

y′

+
e(λ1 − a)√

1
4
c2 + (λ1 − a)2

x′ +
e(λ2 − a)√

1
4
c2 + (λ2 − a)2

y′

=
1
2
cd + e(λ1 − a)√
1
4
c2 + (λ1 − a)2

x′ +
1
2
cd + e(λ2 − a)√
1
4
c2 + (λ2 − a)2

y′

So the function f(x, y) can be rewritten as follows.

f(x, y) = λ1x
′2 + λ2y

′2 +
1
2
cd + e(λ1 − a)√
1
4
c2 + (λ1 − a)2

x′ +
1
2
cd + e(λ2 − a)√
1
4
c2 + (λ2 − a)2

y′ + f

By completing the squares with respect to x′ and y′ we obtain

f(x, y)

= λ1

x′ +
1
2
cd + e(λ1 − a)

2λ1

√
1
4
c2 + (λ1 − a)2

2

+ λ2

y′ +
1
2
cd + e(λ2 − a)

2λ2

√
1
4
c2 + (λ2 − a)2

2

−

{
1
2
cd + e(λ1 − a)

}2

4λ1

{
1
4
c2 + (λ1 − a)2

} −

{
1
2
cd + e(λ2 − a)

}2

4λ2

{
1
4
c2 + (λ2 − a)2

} + f

The function f(x, y) is called elliptic when λ1 > 0 and λ2 > 0 or λ1 < 0 and

λ2 < 0, paratolic when λ1 6= 0 and λ2 = 0 or λ1 = 0 and λ2 6= 0, and hyperbolic

when λ1 > 0 and λ2 < 0 or λ1 < 0 and λ2 > 0.
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In general, λ1 and λ2 may be positive, negative, or zero. In the approximation

problems by a linear function, λ1 > 0 and λ2 > 0 usually, and in special cases,

λ1 > 0 and λ2 = 0, which we show in the next section. That is, J is usually

elliptic and in special cases parabolic, and never hyperbolic, in the approximation

problems by a linear function.

3 J in the approximation problems by a linear

function

Here we calculate the signs of λ1 and λ2 in the approximation problems by

a lienar function. The function J for measuring the distance between the line

f(x) = ax + b and the points (x1, y1), . . . , (xN , yN) was

J(a, b) =
1

2

N∑
i=1

{f(xi) − yi}2.

By expanding this formula we obtain

J(a, b) =
1

2
a2

N∑
i=1

x2
i +

1

2
b2N + ab

N∑
i=1

xi − a
N∑

i=1

xiyi − b
N∑

i=1

yi +
1

2

N∑
i=1

y2
i .

So λ in the previous section is obtained as follows.

λ =

1

2

N∑
i=1

x2
i +

1

2
N ±

√√√√√(1

2

N∑
i=1

x2
i −

1

2
N

)2

+

(
N∑

i=1

xi

)2

2

We let

λ1 =

1

2

N∑
i=1

x2
i +

1

2
N +

√√√√√(1

2

N∑
i=1

x2
i −

1

2
N

)2

+

(
N∑

i=1

xi

)2

2

λ2 =

1

2

N∑
i=1

x2
i +

1

2
N −

√√√√√(1

2

N∑
i=1

x2
i −

1

2
N

)2

+

(
N∑

i=1

xi

)2

2
.

Firstly, λ1 > 0. (We assume N ≥ 1, that is, there is at least one point in the

experiment.) We calculate the sign of the following expression in order to obtain

the sign of λ2.

{
1

2

N∑
i=1

x2
i +

1

2
N

}2

−


√√√√√(1

2

N∑
i=1

x2
i −

1

2
N

)2

+

(
N∑

i=1

xi

)2


2
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Note that the sign of this expression and the sign of λ2 is the same. By tranfroming

this expression, we obtain

{
1

2

N∑
i=1

x2
i +

1

2
N

}2

−


√√√√√(1

2

N∑
i=1

x2
i −

1

2
N

)2

+

(
N∑

i=1

xi

)2


2

=
1

4

{
N∑

i=1

x2
i

}2

+
1

4
N2 +

1

2
N

N∑
i=1

x2
i

−

1

4

(
N∑

i=1

x2
i

)2

+
1

4
N2 − 1

2
N

N∑
i=1

x2
i +

(
N∑

i=1

xi

)2


= N
N∑

i=1

x2
i −

{
N∑

i=1

xi

}2

.

This expression is 0 when N = 1. When N ≥ 2 this expression is equal to the

following expression. ∑
i<j

(xi − xj)
2

Note that
∑
i<j

represents summing up all the expressions where i < j. So when

x1 = . . . = xN ,

that is, when all the values of x-coordinate are equal, the expression is 0, and

positive otherwise. Such situations do not occur in the actual experiments. So in

usual cases λ1 and λ2 are both positive and J(a, b) is elliptic. That is, J(a, b) takes

a minimum value for only one point (a, b). When all the values of x-coordinate are

equal, λ1 > 0 and λ2 = 0, so J(a, b) is parabolic. That is, J(a, b) takes a minimum

value for infinitely many points (a, b).
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