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This document is largely based on the reference book [1] with some parts
slightly changed.

1 Discrete Fourier Transform (DFT)

Let f(x) be a periodic function of period 2π. Assume that f(x) is given only
in terms of values at the following N points on the range [0, 2π]:

xl =
2πl

N
(l = 0, 1, . . . , N − 1). (1)

We say that f(x) is being sampled at these points. We now would like to find
a linear combination of complex exponential functions {eikx|0 ≤ k ≤ N − 1}

N−1∑
k=0

Fke
ikx

that interpolates f(x) at the nodes (1).

f(xl) =
N−1∑
k=0

Fke
ikxl (l = 0, 1, . . . , N − 1)

Let fl = f(xl). Then we would like to find the coefficients F0, . . . , FN−1 such
that the following equation holds.

fl =
N−1∑
k=0

Fke
ikxl (l = 0, 1, . . . , N − 1) (2)
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We multiply the both sides of the equation (2) by e−imxl , where 0 ≤ m ≤
N − 1, and sum over l from 0 to N − 1.

N−1∑
l=0

fle
−imxl =

N−1∑
l=0

N−1∑
k=0

Fke
ikxle−imxl

=
N−1∑
l=0

N−1∑
k=0

Fke
i(k−m)xl

=
N−1∑
l=0

N−1∑
k=0

Fke
i(k−m)2πl/N

=
N−1∑
k=0

N−1∑
l=0

Fke
i(k−m)2πl/N

=
N−1∑
k=0

Fk

N−1∑
l=0

ei(k−m)2πl/N

Let r = ei(k−m)2π/N . Then

ei(k−m)2πl/N = (ei(k−m)2π/N)l = rl.

So the above sum is written as follows.

N−1∑
l=0

fle
−imxl =

N−1∑
k=0

Fk

N−1∑
l=0

rl

When k = m, we have r = e0 = 1, so the sum
N−1∑
l=0

rl is calculated as follows.

N−1∑
l=0

rl =
N−1∑
l=0

1 = N

When k 6= m, we have r 6= 1, so the sum
N−1∑
l=0

rl is calculated as follows

N−1∑
l=0

rl =
1 − rN

1 − r
= 0,
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since
rN = (ei(k−m)2π/N)N = ei(k−m)2π = 1.

So we obtain the following equality.

Fk

N−1∑
l=0

rl =

{
FmN k = m
0 k 6= m

So we obtain
N−1∑
k=0

Fk

N−1∑
l=0

rl = FmN.

Since
N−1∑
l=0

fle
−imxl =

N−1∑
k=0

Fk

N−1∑
l=0

rl we obtain

N−1∑
l=0

fle
−imxl = FmN.

By dividing by N we obtain

Fm =
1

N

N−1∑
l=0

fle
−imxl .

By writing k for m we obtain

Fk =
1

N

N−1∑
l=0

fle
−ikxl =

1

N

N−1∑
l=0

fle
−i2πkl/N k = 0, . . . , N − 1 (3)

since xl = 2πl
N

. The sequence F0, . . . , FN−1 is called the discrete Fourier
transform of the given signal f0, . . . , fN−1.

Let ω = e2πi/N . Then e−i2πkl/N = ω−lk, so

Fk =
1

N

N−1∑
l=0

flω
−lk k = 0, . . . , N − 1.

Then the discrete Fourier transform is written in matrix form as follows.
F0

F1

F2
...

FN−1

 =
1

N


ω0 ω0 ω0 · · · ω0

ω0 ω−1 ω−2 · · · ω−(N−1)

ω0 ω−2 ω−4 · · · ω−2(N−1)

...
...

...
...

ω0 ω−(N−1) ω−2(N−1) · · · ω−(N−1)(N−1)




f0

f1

f2
...

fN−1
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Note that the element of l-th row and k-th column in the matrix is ω−lk.
By the formula (2), we obtain

fl =
N−1∑
k=0

Fke
ikxl =

N−1∑
k=0

Fke
i2πkl/N =

N−1∑
k=0

Fkω
lk (l = 0, 1, . . . , N − 1), (4)

which gives the transformation from the sequence F0, . . . , FN−1 to the se-
quence f0, . . . , fN−1. It is called the inverse discrete Fourier transform.
The inverse discrete Fourier transform is written in matrix form as follows.

f0

f1

f2
...

fN−1

 =


ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωN−1

ω0 ω2 ω4 · · · ω2(N−1)

...
...

...
...

ω0 ω(N−1) ω2(N−1) · · · ω(N−1)(N−1)




F0

F1

F2
...

FN−1


The inverse discrete Fourier transform of the discrete Fourier transform

of a given signal is the signal itself, since the following equation holds.
ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωN−1

ω0 ω2 ω4 · · · ω2(N−1)

...
...

...
...

ω0 ω(N−1) ω2(N−1) · · · ω(N−1)(N−1)


−1

=
1

N


ω0 ω0 ω0 · · · ω0

ω0 ω−1 ω−2 · · · ω−(N−1)

ω0 ω−2 ω−4 · · · ω−2(N−1)

...
...

...
...

ω0 ω−(N−1) ω−2(N−1) · · · ω−(N−1)(N−1)


We do not prove this equation. Refer to textbooks like [1]. Note that A−1

represents the inverse matrix of A.

Example: the case for N = 4.
Calculate the discrete Fourier transform of the following signal.

f =


f0

f1

f2

f3
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Since N = 4, ω = e2πi/4 = eπi/2 = i and thus ω−lk = i−lk. So the discrete
Fourier transform of f is calculated as follows.

1

4


ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3

ω0 ω−2 ω−4 ω−6

ω0 ω−3 ω−6 ω−9

f =
1

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




f0

f1

f2

f3



=
1

4


f0 + f1 + f2 + f3

f0 − if1 − f2 + if3

f0 − f1 + f2 − f3

f0 + if1 − f2 − if3


2 Fast Fourier Transform (FFT)

The discrete Fourier transform is just a multiplication of a matrix to the
given sequence of signal. Naively computing the matrix multiplication re-
quires O(N2) operations. However, the discrete Fourier transform can be
done by the fast Fourier transform (FFT), which needs only O(N log2 N)
operations. FFT utilizes some specific properties of the matrices.

In computing the discrete Fourier transform and the inverse discrete
Fourier transform, it is essential to compute the sequence b0, . . . , bN−1 from
any sequence a0, . . . , aN−1 as follows.

bk =
N−1∑
l=0

alω
kl k = 0, . . . , N − 1 (5)

Let’s check this. In order to compute f0, . . . , fN−1 from F0, . . . , FN−1 follow-
ing (3), we set ak = Fk in the equation (5) so that we obtain fl = bl.

In order to compute F0, . . . , FN−1 from f0, . . . , fN−1 we rewrite the for-
mula (3) as follows.

1

N

N−1∑
l=0

flω
−kl =

1

N

N−1∑
l=0

flωkl

Note that z is called the complex conjugate of z, defined as follows.

a + bi = a − bi
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We can show the above equation by transforming RHS to LHS as follows.

RHS =
1

N

N−1∑
l=0

flωkl

=
1

N

N−1∑
l=0

flωkl

=
1

N

N−1∑
l=0

flωkl

=
1

N

N−1∑
l=0

flω
kl

=
1

N

N−1∑
l=0

fl(ω
−1)kl (since ω = ω−1)

=
1

N

N−1∑
l=0

flω
−kl

= LHS

Then we set al = fl in (5) so that we obtain Fk =
1

N
bk.

Now we consider the cases where N is a number that satisfies

N = 2n

for some natural number n. In these cases we can efficiently compute the
discrete Fourier transform and the inverse discrete Fourier transform.

When N is an even number, the following equations hold.

ωN/2 = −1, ωN/2+1 = −ω, ωN/2+2 = −ω2, . . . , ωN−1 = −ωN/2−1

We show these equations. Since ω = e2πi/N , we obtain

ωN/2 = (e2πi/N)N/2 = eiπ = −1

and hence
ωN/2+k = ωN/2ωk = −ωk.

In the following we write ω = e2πi/N by parameterizing N as follows.

ωN = e2πi/N

6



Then the following equation holds when N is an even number.

ω2
N = ωN/2.

We show this as follows.

ω2
N = (e2πi/N)2 = e4πi/N = e2πi/(N/2) = ωN/2

By defining

f(x) = a0 + a1x + a2x
2 + · · · + aN−1x

N−1 =
N−1∑
l=0

alx
l, (6)

the formula (5) can be written as follows.

bk = f(ωk
N) (k = 0, . . . , N − 1)

So we obtain b0, . . . , bN−1 by computing f(1), . . . , f(ωN−1
N ). Let us write this

computation as FFTN [f(x)].

FFTN [f(x)] = {f(1), f(ωN), f(ω2
N), . . . , f(ωN−1

N )}

where f(1), f(ωN), f(ω2
N), . . . , f(ωN−1

N ) represent the values to compute. The
formula (6) can be rewritten as follows.

f(x) = a0 + a2x
2 + a4x

4 + · · · + aN−2x
N−2

+x(a1 + a3x
2 + a5x

4 + · · · + aN−1x
N−2)

= p(x2) + xq(x2)

Here p(x) and q(x) are defined as follows.

p(x) = a0 + a2x + a4x
2 + · · · + aN−2x

N/2−1

q(x) = a1 + a3x + a5x
2 + · · · + aN−1x

N/2−1

Then FFTN [p(x2)] is as follows.

FFTN [p(x2)] = {p(1), p(ω2
N), p(ω4

N), . . . , p(ω2N−2
N )}

Here it is suffice to compute the first half of this sequence since the second
half is the same as the first half.

FFTN [p(x2)] = {p(1), p(ω2
N), p(ω4

N), . . . , p(ωN−2
N )}
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Since ω2
N = ωN/2, we obtain

FFTN [p(x2)] = {p(1), p(ωN/2), p(ω2
N/2), . . . , p(ω

N/2−1
N/2 )}

and hence
FFTN [p(x2)] = FFTN/2[p(x)].

In the same way, we obtain

FFTN [q(x2)] = FFTN/2[q(x)].

By using the result of FFTN/2[p(x)] and FFTN/2[q(x)], f(ωk
N) for k =

0, 1, 2, . . . , N − 1 can be computed as follows.{
f(ωk

N) = p(ωk
N/2) + ωk

Nq(ωk
N/2) k = 0, 1, . . . , N/2 − 1

f(ω
N/2+k
N ) = p(ωk

N/2) − ωk
Nq(ωk

N/2) k = 0, 1, . . . , N/2 − 1
(7)

So the computation FFT[f(x)] can be decomposed into two computations
FFTN/2[p(x)] and FFTN/2[q(x)] and the computation (7). This gives the fast
Fourier transform.

A Some equations for complex numbers

Here we show some equations for complex numbers.

Theorem 1 For any z1, z2 ∈ C the following equation holds.

z1z2 = z1 · z2

Proof Let z1 = a + bi and z2 = c + di where a, b, c, d ∈ R. Then

LHS = z1z2

= (a + bi)(c + di)

= (ac − bd) + (ad + bc)i

= (ac − bd) − (ad + bc)i

RHS = z1 · z2

= (a + bi) · (c + di)

= (a − bi)(c − di)

= (ac − bd) − (ad + bc)i

�
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Theorem 2 For any z1, z2 ∈ C the following equation holds.

z1 + z2 = z1 + z2

Proof Let z1 = a + bi and z2 = c + di where a, b, c, d ∈ R. Then

LHS = z1 + z2

= (a + bi + (c + di)

= (a + c) + (b + d)i

= (a + c) − (b + d)i

RHS = z1 + z2

= (a + bi) + (c + d)i

= (a − bi) + (c − di)

= (a + c) − (b + d)i

�
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