Supplement 13: the Euler formula

Isao Sasano

The exponential function e* (from complex numbers to complex numbers)
is analytic for all z and (e*)’ = e*. So we obtain the following Maclaurin

series.
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By setting 2z = 1y in this equation we obtain the following equation.
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The series on the right hand side are the Maclaurin series of cosy and siny.
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So we obtain the Euler formula.

e =cosy+isiny



(Note) Let us see the equality
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in the above argument. In general the value of the infinite series may not be
the same if we change the order of summation. But the series

>

n=0

absolutely converges and in such cases we can change freely the order of
summation. So the equality holds.



