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Exercise The Fourier series f(x) = z on the range [—m, 7] is
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Rewrite this series in the form of a linear combination of complex exponential
functions {e**|k € Z}.

Solution 1 By the Euler’s formula
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By adding the equations (2) and (3) we obtain the following equation.
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By subtracting the equation (3) from (2) we obtain the following equation.
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So we obtain the following equations.
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By setting = kx in (4) we obtain
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By substituting RHS of this equation for LHS of this equation in (1) we
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We rewrite this series as follows.
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Here ¢;, is defined as follows.

Crp = 0 k=0



Note that Z cpe™ is defined as follows.
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Solution 2  Here we calculate the series directly. Assume the following
equation holds. (Note that there are no coefficients c_,,, ..., c, ..., ¢, that
satisfy the equation, but it’s ok.)
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Multiply e~%* to the both sides of this equation and integrate them on the
range [—m, 7.
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So we obtain ¢ as follows.
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When k # 0 we calculate ¢, as follows.
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When k = 0 we calculate ¢q as follows.
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So we obtain the series

where
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The Fourier series is the limit of the above linear combination as n goes to
infinity.
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This is the same as the series obtained in Solution 1.

Comment Here we rewrite the series back to the series (1).

o0

This is the series (1).
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