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Abstract
This paper proposes a lightweight fusion method for general recur-
sive function definitions. Compared with existing proposals, our
method has several significant practical features: it works for gen-
eral recursive functions on general algebraic data types; it does not
produce extra runtime overhead (except for possible code size in-
crease due to the success of fusion); and it is readily incorporated
in standard inlining optimization. This is achieved by extending
the ordinary inlining process with a new fusion law that trans-
forms a term of the form f ◦ (fix g.λx.E) to a new fixed point
term fixh.λx.E′ by promoting the function f through the fixed
point operator. This is a sound syntactic transformation rule that
is not sensitive to the types of f and g. This property makes our
method applicable to wide range of functions including those with
multi-parameters in both curried and uncurried forms. Although
this method does not guarantee any form of completeness, it fuses
typical examples discussed in the literature and others that involve
accumulating parameters, either in the foldl-like specific forms
or in general recursive forms, without any additional machinery. In
order to substantiate our claim, we have implemented our method
in a compiler. Although it is preliminary, it demonstrates practical
feasibility of this method.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization; D.3.4 [Program-
ming Languages]: Language Classifications—Applicative (func-
tional) languages; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Program and recursion schemes
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1. Introduction
Fusion is a program optimization technique to combine two ad-
jacent computations, where one produces a result which is then
processed by the other, by “fusing” two successive computation
steps (function applications or loops) into one, yielding a more
efficient program. In functional programming, this technique has
the additional significance that it suppresses construction of in-
termediate data structures, such as lists and other inductively de-
fined data structures. Burstall and Darlington [1] were perhaps the
first to study this optimization in functional programming and pre-
sented a general strategy for generating efficient recursive programs
through fold/unfold transformation. Wadler [23] observed that this
optimization can be carried out systematically to eliminate inter-
mediate trees altogether and showed the “deforestation” theorem
stating that every composition of functions in a certain restricted
form can be effectively fused into a single function. Since this sem-
inal observation, a series of investigations have been done towards
establishing a general method for program fusion.

One direction toward developing a practical fusion method is to
restrict the target functions to be of specific forms. Gill, Launch-
bury and Peyton Jones [6] presented the “short cut” deforestation
law stating that if both the producer function and the consumer
function are written in a specific form then they are fused together.
Since this rule is a simple local transformation, it is easily incorpo-
rated in an optimizing compiler. This approach has been general-
ized to user-defined recursive data types [19, 22].

One major limitation of these approaches is that they do not deal
with general recursive functions. While it is certainly a valid claim
that “lucid” or compositional style programming has the advan-
tages of clarity and modularity, one often has to define data struc-
tures specific to the problem domain and to write specialized func-
tions using general recursion. In serious practical software devel-
opment, this tendency is predominant. Even in the GHC compiler
for Haskell, which implements the rule for short cut fusion [17],
build/cata style code appears to be minority compared with general
recursive functions. Since the general idea underlying deforestation
is equally applicable to general recursive definitions, it is highly de-
sirable to develop a fusion method that works directly on general
recursive functions.

Launchbury and Sheard [12] proposed one solution to this prob-
lem by developing an algorithm to transform a recursive function
definition into a program in build/cata form. The resulting program
is then fused by build/cata laws. Chitil [4] proposed a type based
approach to obtaining build forms from general recursive defini-
tions. These approaches are conceptually elegant, but their practi-
cal feasibility is not clear. A key step in their development is to
represent a term that constructs a data structure as a higher-order
function using the technique of representing term algebra (induc-
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tive types) in the second-order lambda calculus. For example, an
efficient and compact list term 1:2:nil (written in Haskell syn-
tax) is temporarily “heated up” to a lambda term λc.λn.c 1 (c 2 n).
It is questionable whether or not these costly abstractions should
all be fused away in an optimizing compiler for a language that
involves various features over pure lambda expressions.

Another limitation of the short-cut fusion approach is that it
is restricted to functions of single argument. In practical software
development, functions are often written in efficient tail recursive
form using accumulating parameters, or they may take various
extra parameters required by the problem domain. Unfortunately,
short-cut fusion [6] and its extension [22, 21] do not scale up to
those functions.

In order for a fusion method to become a practical optimiza-
tion method for an optimizing compiler, it should ideally have the
following features.

1 It is simple and fully automatic so that it can be easily embedded
in an optimizing compiler.

2 It does not introduce any extra runtime overhead.

3 It works for general recursive functions with multiple parame-
ters (including accumulating parameters and others).

4 It works for general user-defined data types.

5 It fuses all fusable functions.

Development of such a method is the ultimate goal of the subject.
However, if we weaken the requirement by replacing the last con-
dition of completeness to

5’ it works for expected typical cases,

then we can indeed develop such a system. An attempt is made in
this paper to develop such a fusion method.

Previous researches have mainly focused on algebraic (or cat-
egorical) properties of generic functions on data structures for de-
ducing general fusion patterns. Some notable examples include the
promotion theorem for foldr [13] and its generalizations [14, 19],
short-cut deforestation for foldr and build [6] and its generaliza-
tion in calculational form [22], destroy and unfold fusion [21],
and more recent algebraic fusion based on monoid homomorphism
[11]. Instead of pursuing this direction, we follow the original ap-
proach of fold/unfold transformation [1] and develop a method to
fuse two recursive function definitions directly through unfolding,
simplification (beta-reduction), and folding (generating new recur-
sive definitions). The crucial step in developing a practical fusion
method is to find deterministic and simple, yet powerful rules to
control the fusion process.

By analyzing various fusable recursive functions, we have dis-
covered the following simple yet effective transformation strategy.
Let f = fix f.λx.Ef and g = fix g.λx.Eg be recursive function
definitions. Under these bindings, we can transform the composi-
tion f ◦ g to obtain a fusion of the two as follows.

1. Inline the body of g to obtain f ◦ λx.Eg , which is beta reduced
to λx.f Eg .

2. Transform f Eg to E′
g by distributing the function symbol f to

all the tail positions of Eg .

3. Inline f once in E′
g and simplify the term to obtain a term Ef,g .

4. Replace the occurrences of f ◦ g in Ef,g by a new function
name f g and generate a new binding f g = fix f g.λx.Ef g .

Since this process promotes the function f through the fixed point
operator, we call it fixed point promotion.

Step 2 is represented by a term transformation axiom, which we
call (AppDist). The entire step is represented by a transformation
rule that produces a new fixed point term (Step 4) by reducing the

body using (AppDist) and other reduction axioms. We refer to this
transformation rule as (FixPromote).

This remarkably simple process can fuse various general recur-
sive functions, including those involving accumulating parameters
or tail recursive functions such as foldl without resorting to any
heuristics. Since this process only involves two simple determin-
istic transformation rules, it can easily be incorporated in any in-
lining process. Moreover, it is robust enough to scale up to practi-
cal optimizing compiler of a polymorphic functional language. We
therefore claim that the resulting fusion algorithm is a practical one
that satisfies the desired criteria mentioned above. In order to sub-
stantiate this claim, we have implemented the algorithm in a proto-
type compiler for a full scale functional language, and have tested
various examples. The results verify that our method fuses typical
examples including those with extra parameters. The implementa-
tion is made available through the Internet for downloading. See
Section 6 for the details. We should note that the implementation
is a preliminary one only for testing the behavior of the proposed
method, and does not intend to be a part of a practical optimization
phase.

The rest of the paper is organized as follows. Section 2 infor-
mally presents our lightweight fusion method through examples.
Section 3 defines a simple functional language, gives our two new
fusion rules, and proves the soundness of the two rules. Section 4
presents the fusion algorithm. Section 5 demonstrates the power of
the algorithm through various examples. Section 6 descries our ex-
perimental implementation. Section 7 shows some general bench-
mark results and their analysis. Section 8 discusses related work.
Section 9 concludes the paper.

2. Overview of Lightweight Fusion
To illustrates our method, let us first consider the following simple
example.

let mapsq =
fix mapsq.

λL.case L of
nil => nil,
cons(h,t) => cons(h*h, mapsq t)

sum = fix sum.λL.case L of
nil => 0,
cons(h,t) => h + sum t

in · · · sum (mapsq E) · · · end

On detecting an application sum (mapsq E) of a composition of
two recursive functions, we attempt to generate a new recursive
definition starting from the composition function:

λx.sum (mapsq x)

where the subterms that are transformed in the subsequent step are
underlined.

We first inline the lambda body of the inner function mapsq.

λx.sum (case x of
nil => nil,
cons(h,t) => cons (h*h, mapsq t))

Inlining is not recursive, and hence mapsq in the body refers to the
original definition.

Next, we apply the (AppDist) rule: we distribute the function
name sum to all the tail positions of its argument term.

λx.case x of
nil => sum nil,
cons(h,t) => sum (cons (h*h, mapsq t))

We then inline the lambda body of sum once, and simplify the
resulting term.
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λx.case x of
nil => 0,
cons(h,t) => h*h + sum (mapsq t)

If the resulting term contains the composition sum (mapsq )
that we are fusing, then we create a new recursive function name
sum mapsq and substitute it for the composition.

fix sum mapsq.λx.case x of
nil => 0,
cons(h,t) => h*h + sum mapsq t

This entire process is an application of (FixPromote).
The successful application of (FixPromote) indicates that the

composition of the two functions is fused into a new recursive
function. If this happens, then we put the new definition after the
definitions of sum and mapsq, and replace all the occurrences of the
composition sum ◦ mapsq appearing in the rest of the program
by sum mapsq. If there is no reference to the original functions
sum and mapsq then their definitions are removed by dead code
elimination, and the following program is obtained.

let sum mapsq =
fix sum mapsq.

λx.case x of
nil => 0,
cons(h,t) => h*h + sum mapsq t

in · · · sum mapsq E · · · end

This process is easily extended to functions of multiple param-
eters. For example, suppose sum is defined in tail recursive form as
follows.

let mapsq = ...
sum = fix sum.λL.λS.

case L of
nil => S,
cons(h,t) => sum t (S + h)

in · · · sum (mapsq E) 0 · · · end

We start with λx.λS.sum (mapsq x) S and first inline mapsq.

λx.λS.sum (case x of
nil => nil,
cons(h,t) => cons (h*h, mapsq t)) S

We then distribute the application context sum S to all the tail
positions.

λx.λS.case x of
nil => sum nil S,
cons(h,t) => sum (cons (h*h, mapsq t)) S

Next, we inline sum once and simplify.

λx.λS.case x of
nil => S,
cons(h,t) => sum (mapsq t) (S + h*h)

Finally, we replace λx.λS.sum (mapsq x) S with a new func-
tion name sum mapsq and obtain the following program (after dead
code elimination).

let sum mapsq =
fix sum mapsq.λx.λS.

case x of
nil => S,
cons(h,t) => sum mapsq t (S + h*h)

in · · · sum mapsq E 0 · · · end

This transformation process also extends to uncurried multi-
argument functions.

We note that the process outlined above is simple, terminating
and entirely automatic, so that it can easily be embedded in the
standard inlining process. Moreover, it relies neither on any heuris-
tics nor on any special properties of data types or functions. It is
therefore applicable to general function definitions manipulating
user-defined data types.

3. Fixed Point Promotion Laws and its Soundness
This section presents the new fusion laws on which our method is
based, and shows their soundness.

3.1 The source language and some notations
We consider the following set of lambda terms.

M ::= x | λx.M | fix f.M | M M

| C(M, . . . , M)

| case M of p =>M, . . . , p =>M

| let x = M in M end

p ::= C(x, . . . , x)

fix f.M denotes the fixed point of the functional λf.M and repre-
sents a recursive function term. C(M, . . . , M) is a data constructor
term for algebraic (user defined) data types. We sometimes write
let x1 = M1, . . . , xn = Mnin M end for an abbreviation of a
nested let expression. If M and N are terms, we write M{N/x}
for the term obtained by the usual capture free substitution of N for
x in M . In addition to this core syntax, in examples, we use terms
containing primitive operations.

For this language, we assume the usual bound variable conven-
tion, i.e., the set of bound variables are pairwise distinct and are
different from free variables.

A context, ranged over by C, is defined by the following syntax

C ::= [ ] | x | λx.C | fix f.C | C C
| C(C, . . . , C)
| case C of p => C, . . . , p => C
| let x = C in C end

where [ ] is a “hole”. If we need to identify each hole differently,
we use some index i and write [ ]i. A context C generated by this
grammar contains zero or more holes. In what follows, we let C
range only over those contexts that contain one or more holes. We
write C[Mi]i for the term obtained from C by filling each hole [ ]i
of C with (different) Mi, and write C[M ] for the term obtained
from C by filling all the holes of C with the same M . We also write
C{N/x} for the context obtained from the capture free substitution
of N for x in C. In particular, C{N/x}[Mi]i denotes the term
obtained by filling each hole [ ]i of the context C{N/x} with Mi.

A tail context, ranged over by T , is defined by the following
syntax.

T ::= [ ]

| case M of p => T , . . . , p => T
| let x = M in T end

A tail context T is a term with “holes” at its all tail positions. We
write T [Mi]i for the term obtained by filling each hole [ ]i in T
with Mi.

3.2 Fusion laws for single parameter functions
We assume the standard call by name semantics. Later in Section 6,
we shall comment on applying our fusion method to strict lan-
guages.
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Our first fusion law is “apply distribution” defined below.

(AppDist) f T [Mi]i =⇒ T [f Mi]i

By this reduction, (static) evaluation can continue. This rule pulls
out the head term of a case expression. For this rule to be sound, it
is therefore necessary for f to be strict. Note that this condition is
enforced in short-cut fusion.

THEOREM 1. (AppDist) is sound for any strict f .

Proof. Here we assume a standard environment-style denotational
semantics [[M ]]η of lambda term M under environment η, and show
the semantic equation:

[[f T [Mi]i]]η = [[T [f Mi]i]]η

The following argument does not depend on specific property of
the semantic definition.

The proof is by simple induction on the structure of the
tail context T . The base case is the identity. Suppose T =
case M0 of · · · , pk => Tk, · · · . Then

T [f Mi]i = case M0 of · · · , pk => Tk[f Mjk ]jk , · · ·

Suppose [[f T [Mi]i]]η 6= ⊥. Since f is strict, [[T [Mi]i]]η 6= ⊥.
Suppose [[M0]]η = Ci(v1, . . . , vn) for some Ci such that pi =
Ci(x1, . . . , xn). Then we have the following.

[[f (case M0 of · · · , pi => Ti[Mji ]ji , · · · )]]η
= [[f Ti[Mji ]ji ]]η ∪ {x1 7→ v1, . . . , xn 7→ vn}
= [[Ti[f Mji ]ji ]]η ∪ {x1 7→ v1, . . . , xn 7→ vn}

(by induction hypothesis)
= [[case M0 of · · · , pi => Ti[f Mji ]ji , · · · ]]η

The cases other than [[M0]]η 6= Ci(v1, . . . , vn) are trivial in an
untyped semantics, or vacuous in a typed semantics.

The case for let x = M in T end is simpler and omitted. 2

Our main law for fixed point promotion is the following infer-
ence rule.

(FixPromote) f ◦ M
+

=⇒ C[f ◦ g]
f ◦ fix g.M =⇒ fixh.(C{fix g.M/g})[h]

where +
=⇒ represents one or more applications of the transforma-

tion relation =⇒ generated by our fusion laws (together with stan-
dard simplifying reduction rules.)

To show the soundness of this rule, we first show a general
equational property. We write M = M ′ for the β equality relation
with the following rule for fix

fix g.M = M{fix g.M/g}

and we write M ≡ N for the syntactic and definitional equality.

LEMMA 1. If f ◦ M = C[f ◦ g] then f ◦ fix g.M is a fixed point
of the functional λh.(C{fix g.M/g})[h].

Proof. Assume f ◦ M = C[f ◦ g]. We have the following.

f ◦ fix g.M ≡ λx.f((fix g.M) x)

= λx.f((M{fix g.M/g}) x)

≡ λx.(f(M x)){fix g.M/g}
≡ (f ◦ M){fix g.M/g}
= C[f ◦ g]{fix g.M/g} (by assumption)
= C[f ◦ fix g.M ]{fix g.M/g}
≡ C{fix g.M/g}[f ◦ fix g.M ]

= (λh.C{fix g.M/g}[h])(f ◦ fix g.M) 2

We further assume the standard denotational semantics based on
the standard domain theory, where the fixed point construct denotes
the least fixed point in the continuous function space.

THEOREM 2. (FixPromote) is sound for any strict f .

Proof. In the following argument, we implicitly identify terms
with their denotations in the domain theory. Since the denotation
of fixh.(C{fix g.M/g})[h] is the least fixed point, Lemma 1
establishes the following.

f ◦ fix g.M w fixh.(C{fix g.M/g})[h]

To show the converse, let F = λw.C{fix g.M/g}[w], and write
F n(x) for F (F · · · (F

| {z }

n times

x) · · · ). We first show the following in-

equation for all n by induction on n.

F n(⊥) w f ◦ ((λg.M)n(⊥))

This holds for n = 0 since f ◦ ⊥ = ⊥. The induction step is as
follows.

F n+1(⊥) = C{fix g.M/g}[F n(⊥)]
w C{fix g.M/g}[f ◦ ((λg.M)n(⊥))]
w C{(λg.M)n(⊥)/g}[f ◦ ((λg.M)n(⊥))]
= C[f ◦ g]{(λg.M)n(⊥)/g}
= (f ◦ M){(λg.M)n(⊥)/g}
= f ◦ ((λg.M)((λg.M)n(⊥)))
= f ◦ ((λg.M)n+1(⊥))

From the above inequality, we have the following.

fixh.(C{fix g.M/g})[h] = t {F n(⊥) | n ≥ 0}
w t {f ◦ (λg.M)n(⊥) | n ≥ 0}
= f ◦ t {(λg.M)n(⊥) | n ≥ 0}

(since f and ◦ are continuous)
= f ◦ fix g.M

This concludes the proof. 2

3.3 Fusion laws for multiple parameter functions
Both of (AppDist) and (FixPromote) extend systematically to
multi-parameter functions. The case where the inner g is a multi-
parameter function is straightforward. Here we only show the fol-
lowing two cases.

1. The outer f is a two parameter curried function whose first
argument is the target of fusion.

2. The outer f is a two parameter uncurried function whose first
argument is the target of fusion.

For the curried case, the law (AppDist) and (FixPromote) be-
come (AppDist-c) and (FixPromote-c) as shown in Figure 1. For
these laws, we can show the following.

THEOREM 3. (AppDist-c) is sound for any function f that is strict
with respect to the first argument, i.e. f ⊥ y = ⊥.

LEMMA 2. If f (M x) y = C[f (g M i
1) M i

2]i then

λx.λy.f((fix g.M) x) y

is a fixed point of λh.λx.λy.C[h M i
1 M i

2]i{fix g.M/g}.

For the uncurried case, the law (AppDist) and (FixPromote)
become (AppDist-u) and (FixPromote-u) as shown in Figure 1. In
these definitions, we have used extended lambda terms: λ(x, y).M
for two-parameter lambda abstraction and M(M1, M2) for two-
parameter lambda application. For these laws, we can show the
following.

THEOREM 4. (AppDist-u) is sound for any function f that is strict
with respect to the first argument, i.e. f (⊥, y) = ⊥.
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(AppDist-c) f T [Mi]i x =⇒ T [f Mi x]i

(FixPromote-c)
f (M x) y =⇒ C[f (g M i

1) M i
2]i

λx.λy.f ((fix g.M) x) y =⇒ fixh.λx.λy.C[h M i
1 M i

2]i{fix g.M/g}

(AppDist-u) f (T [Mi]i, x) =⇒ T [(f Mi, x)]i

(FixPromote-u)
f (M x, y) =⇒ C[f (g M i

1, M
i
2)]i

λ(x, y).f ((fix g.M) x, y) =⇒ fixh.λ(x, y).C[h (M i
1, M

i
2)]i{fix g.M/g}

Figure 1. Fusion Laws extended to Multi-parameter Functions

LEMMA 3. If f (M x, y) = C[f (g M i
1, M

i
2)]i then

λ(x, y).f ((fix g.M) x, y)

is a fixed point of λh.λ(x, y).C[h (M i
1, M

i
2)]i{fix g.M/g}.

Theorems 3, 4 and Lemmas 2, 3 can be proved similarly to
the corresponding proofs of Theorem 1 and Lemma 1. We expect
that semantic correctness of these generalized lows can be shown
similarly to the proof of Theorem 2.

Note that it is straightforward to generalize these results to the
cases with functions having more than two parameters. Our fusion
algorithm shown in Section 4 and our implementation described in
Section 6 treat general multi-parameter cases.

4. The Lightweight Fusion Algorithm
We now develop a lightweight fusion algorithm by embedding
the fusion mechanism explained above in an inlining process. The
strategy is summarized below.

• The algorithm recursively evaluates the input term using a bind-
ing environment.

• In order to suppress repeated fusion computations, the algo-
rithm also maintains a fusion environment that records the re-
sults of previous fusion attempts for pairs of variables that are
bound to recursive functions.

• When it encounters a function composition f ◦ g, the algorithm
first checks in the binding environment whether both f and g
are bound to recursive functions. If this is the case then the
algorithm performs the following actions depending on the past
history of the pair (f, g) recorded in the fusion environment.

If fusion for this pair has succeeded before, then it returns
the new function name f g that was created by the previous
fusion attempt and recorded in the fusion environment.

If fusion failed before, then it returns f ◦ g.

If fusion has never been tried, then the algorithm attempts
to fuse the two by applying the fusion laws explained in
Section 3, and returns the environment extended with the
result of the fusion attempt.

• When it encounters a term let h = M1 in M2 end, the al-
gorithm processes M1 and obtains the new terms, and then pro-
cesses M2 with the updated fusion environment. The algorithm
then checks whether the fusion environment holds new function
definitions that should be inserted into this let binding accord-
ing to the following policy. If functions f and g are defined in
this order, and f g = M is the new function definition created
by fusing f and g, then f g is inserted immediately after the
binding of g.
In a strict language, a further special treatment of bindings is
necessary during the computation of the (FixPromote) rule. We
shall discuss this issue in Section 6.3.

• For all the other terms, the algorithm performs standard inlining
and simplification.

To define the algorithm, we introduce some notations. We use
f, g for variables bound to functions. We let µ range over binding
environments, which is a mapping from variables to terms. We
write µ{x 7→ M} for the environment obtained from µ by adding
the binding {x 7→ M}, and write µ|x for the environment obtained
from µ by deleting the entry of x. We let η range over fusion
environments, which is a mapping from pairs of variables to one
of the following results of fusion attempts.

• Undefined : fusion has never been tried for the pair.
• Failed : fusion has failed for this pair.
• Succeeded M : fusion has succeeded for the pair with the fused

function term M .
• Inserted : fusion has succeeded and the binding has already

been inserted as a binding in some let expression.

We write η{(f, g) 7→ M} for the environment obtained from η
by adding the binding {(f, g) 7→ M}. Under the bound variable
convention for terms, both a variable and a pair of variables are
globally unique and therefore µ{x 7→ M} and η{(f, g) 7→ M}
are always well defined. We adopt the convention that the new fused
function name for a pair f ◦ g is f g (determined from f, g), and
we do not record this name in a fusion environment.

The lightweight fusion algorithm is now defined as a function
F [[ ]] of the following functionality.

F [[M ]] η µ = (M ′, η′)

In order to avoid notational complication, we give the definition
of F [[ ]] for one-parameter functions, and explain the necessary
extensions for the multi-parameter case later.

The algorithm is given in Figure 2 and 3. It only shows the
cases relevant to fusion. The other cases are simple recursive
evaluation as in ordinary inlining. The algorithm uses the sub-
algorithms fusion and dist. The function fusion is for fusing two
recursive functions; fusion (f, λx.Mf ) (g, λx.Mg) µ η tries to
fuse f and g in the expression λx.f (g x) under the bindings
{f 7→ fix f.λx.Mf , g 7→ fix g.λx.Mg} according to the method
described in Section 3. The substitution {λx.Mf/f} used in the
definition of fusion indicates that f is inlined once in F [[ ]]. The
pattern C[f (g Mi)]i used in case branches in fusion indicates that
a term of the form f (g M) is replaced by f g M each time F [[ ]]
encounters the successive application of f and g. These can be im-
plemented by adding some extra information in the entries of the
fusion environment µ. dist(f, M) distributes the function variable
f to all the tail positions in M according to the definition given in
Section 3.

4.1 Extensions to multiple parameter functions
We describe the necessary extensions to deal with multiple param-
eter functions. Here we only consider uncurried functions, since an
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F [[M ]] η µ =
case M of

(f (g M0)) ⇒
let (M ′

0, η
′) = F [[M0]] η µ

in case η′((f, g)) of
Failed ⇒ ((f (g M ′

0)), η′)
| Succeeded ⇒ (f g M ′

0, η′)
| Inserted ⇒ (f g M ′

0, η′)
| Undefined ⇒

if µ(g) = fix g.λx.Mg and
µ(f) = fix f.λx.Mf

then
let

η′′ = fusion (f, λx.Mf ) (g, λx.Mg)
η′ µ|g

in
case η′′((f, g)) of

Succeeded ⇒ (f g M ′
0, η′′)

| Failed ⇒ (f (g M ′
0), η′′)

end
else we perform ordinary inlining

end
| let h = M1 in M2 end ⇒

let
(M ′

1, η1) = F [[M1]] η µ
(M ′

2, η2) = F [[M2]] η1 µ{h 7→ M ′
1}

in
if η2 = η′

2{(f, g) 7→ Succeeded M3)} and
(f = h or g = h)

then (let h = M ′
1in let f g = M3 in M ′

2 end,
η′
2{(f, g) 7→ Inserted})

else (let h = M ′
1 in M ′

2 end, η2)
end

| in all the other cases we perform ordinary inlining

fusion (f, λx.Mf ) (g, λx.Mg) η µ =
let

Mbody = dist(f, Mg)
in

case Mbody of
C[f (g Mi)]i ⇒

let
(M1, η

′) = F [[C[f g Mi]i{λx.Mf/f}]] η µ|f
in

case M1 of
C[f (g Mi)]i ⇒

η′{(f, g) 7→
Succeeded (fix f g.λx.C[f g Mi]i)}

| ⇒
η′{(f, g) 7→

Succeeded (fix f g.λx.M1)}
end

| ⇒
case F [[Mbody{λx.Mf/f}]] η µ|f of

(C[f (g Mi)]i, η
′) ⇒

η′{(f, g) 7→ Succeeded (fix f g.λx.C[f g Mi]i)}
| ( , η′) ⇒

η′{(f, g) 7→ Failed}
end

Figure 2. Fusion algorithm F [[ ]]

dist (f, M) =
case M of

case M0 of p1 =>M1, . . . , pn =>Mn

⇒
case M0 of

p1 => dist (f, M1), . . . , pn => dist (f, Mn)
| let x = M1 in M2 end

⇒ let x = M1 in dist (f, M2) end
| ⇒ f M

Figure 3. Distribution function dist

intermediate language of an optimizing compiler often uses the un-
curried representation. This is also the case in our implementation.

The set of terms is extended to include the uncurried multiple
parameter functions as follows.

M ::= · · · | λ(x1, . . . , xk). M | M (M, . . . , M)

In what follows, we write ~M for a sequences of terms of the form
M1, . . . , Mk separated by comma. Similar notation is used for
patterns. For example, ( ~M1, . . . , ~Mn) represents a tuple term of
the form (M1

1 , . . . , M1
k1 , . . . , Mn

1 , . . . , Mn
kn

).
The extended algorithm FM[[ ]] processes multi-parameter

functions as follows.

FM[[M ]] η µ =
case M of

f ( ~M) ⇒
case divide ( ~M) of

( ~Ml, g ( ~Mm), ~Mr) ⇒
. . .
let

η′′ = fusionM (f, λ(~x).Mf ) (g, λ(~x).Mg) η′ µ|g
in
· · ·

When the algorithm detects an application f( ~M), divide ( ~M)
searches for an application term of the form g ( ~Mm) in ~M and
returns ( ~Ml, g ( ~Mm), ~Mr) indicating that ~M are divided into three
parts, the middle of which is the application term g ( ~Mm). The
matched terms ~Ml, ~Mm, ~Mr are recursively processed by FM[[ ]]
and then used as part of the result as in the algorithm F [[ ]]. When
f and g are recursive functions and they have not been tried to
fuse, the extended fusion function fusionM is invoked and it tries
to fuse f and g in the expression λ(~xl, ~xm, ~xr). f (~xl, g ( ~xm), ~xr)
under the bindings {f 7→ fix f.λ(~x).Mf , g 7→ fix g.λ(~x).Mg}.
Note that we allow both the outer function f and the inner function
g to have more than one arguments. The fusing function fusionM
is obtained by refining fusion based on the rule (FixPromote-u) in
Section 3. The sub-algorithm dist is also refined to distM according
to (AppDist-u) rule.

distM (f, ( ~Ml), M, ( ~Mr)) =
case M of
case M0 of p1 =>M1, . . ., pn =>Mn

⇒ case M0 of

p1 => distM (f, ( ~Ml), M1, ( ~Mr)), . . . ,

pn => distM (f, ( ~Ml), Mn, ( ~Mr))
| let x1 = M1, . . ., xk = Mk in M0 end

⇒ let x1 = M1, . . ., xk = Mk

in distM (f, ( ~Ml), M0, ( ~Mr)) end

| ⇒ f( ~Ml, M, ~Mr)
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The arguments f , ~Ml, ~Mr are always variables since the function
distM is invoked in the function fusion as follows.

let Mbody = distM (f, (~xl), Mg, ( ~xr)) in . . .

So the function distM does not cause code duplication.
The function fusionM tries to find successive function appli-

cations of the form f ( ~M i
l , g Mi, ~M i

r) and replaces them with
f g ( ~M i

l , Mi, M
i
r). By using the pattern matching notation as in

the algorithm F [[ ]], we can write the matching part as follows:

case Mbody of

C[f ( ~M i
l , g Mi, ~M i

r)]i ⇒ . . .

where ~M i
l and ~M i

r are pattern variables used to match the ar-
guments. When the matching succeeds, the algorithm creates the
term of the form C[f g ( ~M i

l , Mi, M
i
r)]i. This achieves the replace-

ment of the composition f( ~M i
l , g Mi, ~M i

r) of f and g with uncur-
ried multi-parameters by the application f g ( ~M i

l , Mi, M
i
r) of new

function f g to the multiple parameters.

5. Examples
We claim that the lightweight fusion method we have just presented
has practical significance in two ways. Firstly, it is readily imple-
mentable in any optimizing compiler that performs inlining, and
it does not produce extra runtime overhead (except for code size
increase due to the fact that both fused functions and the original
functions are referenced.) Secondly, although it does not have any
formal completeness property, it is powerful enough to fuse a wide
range of recursively defined functions.

As we shall report in Section 6 and Section 7, we substantiate
the first property by developing a simple inliner for a prototype
compiler of a full scale functional language and testing it with
some benchmarks. The second property can only be substantiated
through long-term practical testing. We demonstrate its feasibility
through examples that have been discussed in the literature.

5.1 Successful examples and their performance
This subsection shows typical examples that our lightweight fusion
algorithm can deal with. All of them are successfully fused by our
implementation without any preparation or ad-hoc modification to
the algorithm. We measured execution time, heap usage, and file
size for the examples with or without the inlining and fusion on our
abstract machine. The input data are lists with 105 elements and
trees with 218 elements. Tables 1, 2, and 3 show the performance
results. The meaning of the column marks are: “-” is without
inlining, “Inline” is with inlining, “Fusion” is with inlining and
fusion, and “F/I” is the ratio of the last two.

As we shall describe in Section 6, our implementation is in a
compiler for SML#, an extension of Standard ML. So let us use
Standard ML syntax in showing examples. Although fusion is done
for a typed polymorphic intermediate language, in showing exam-
ples, we omit type information to avoid cluttering the programs.

• Sum of squares of a list of integers.
This is the old friend of fusion, whose fusion steps have been
shown in Section 2.
Before fusion:

let fun sum [] = 0
| sum (x::xs) = x + sum xs

fun mapsq [] = []
| mapsq (x::xs) = x*x :: mapsq xs

in sum (mapsq list)
end

After fusion:

let fun sum_mapsq [] = 0
| sum_mapsq (x::xs) = x*x + sum_mapsq xs

in sum_mapsq list
end

• Sum of the integers from n to m.
An integer list is produced by from and is consumed by sum.
Before fusion:

let fun sum [] = 0
| sum (x::xs) = x + sum xs

fun from a b = if a > b then []
else a :: from (a+1) b

in sum (from 100000 200000)
end

After fusion:

let fun sum_from a b = if a > b then 0
else a + sum_from (a+1) b

in sum_from 100000 200000 end

• foldl: Tail recursive sum of squares of list of integers.
This is a rewrite of the previous example using foldl. The tail
recursive foldl is much preferred to foldr if the result is the
same. There seems to be no practically implemented automated
fusion system that can deal with this simple example.
Before fusion:

let fun from a b = if a > b then []
else a :: from (a+1) b

fun foldl f r [] = r
| foldl f r (x::xs) = foldl f (f (x,r)) xs

in foldl (op +) 0 (from 100000 200000)
end

After fusion:

let fun foldl_from f r a b =
if a > b then r
else foldl_from f (f (a,r)) (a+1) b

in foldl_from (op +) 0 100000 200000 end

• Fusion of map.
A boolean function even is applied to each element in the input
integer list. Then the function allTrue checks whether all the
obtained values are true or not.
Before fusion:

let fun allTrue [] = true
| allTrue (x::xs) = x andalso (allTrue xs)

fun map f [] = []
| map f (x::xs) = f x :: map f xs

fun even x = x mod 2 = 0
in allTrue (map even list)
end

After fusion:

let fun allTrue_map f [] = true
| allTrue_map f (x::xs) =

f x andalso (allTrue_map f xs)
fun even x = x mod 2 = 0

in allTrue_map even list
end
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Table 1. Execution time for typical examples (in seconds)
Program − Inline Fusion F/I
sum mapsq 0.27 0.27 0.21 78%
sum from 0.21 0.22 0.15 68%
foldl from 0.27 0.27 0.15 56%
allTrue map 0.43 0.33 0.18 55%
sumTree mapsqTree 0.77 0.76 0.51 67%

Table 2. Heap allocation for typical examples (in the number of
fields divided by one thousand)

Program − Inline Fusion F/I
sum mapsq 600.2 600.2 300.2 50.0%
sum from 300.2 300.2 0.2 0.1%
foldl from 500.2 500.2 200.2 40.0%
allTrue map 1,200.3 600.2 300.2 50.0%
sumTree mapsqTree 2,621.7 2,621.7 1,310.9 50.0%

In this case, the function even is simply passed to the next func-
tion call without any change. This is just an extra parameter but
not the so called accumulating parameter. Our fusion algorithm
does not depend on whether the parameter is accumulating or
not.

• Fusion of functions on trees
Our fusion does not depend on lists. In fact, our fusion system
does not even know any property of list. Our system can fuse
functions on user defined tree-like structure. Here is a simple
example of fusing tree.
Before fusion:

let fun sumTree Empty = 0
| sumTree (Node (x,t1,t2)) =
x + sumTree t1 + sumTree t2

fun mapsqTree Empty = Empty
| mapsqTree (Node (x,t1,t2)) =
Node (x * x,

mapsqTree t1,
mapsqTree t2)

in sumTree (mapsqTree tree)
end

After fusion:

let fun sumTree_mapsqTree t =
case t of

Empty => 0
| Node (x,t1,t2) =>

x * x
+ sumTree_mapsqTree t1
+ sumTree_mapsqTree t2

in sumTree_mapsqTree tree
end

5.2 Examples that cannot be fused
As shown in the above, our fusion algorithm works on typical
examples, but of course it does not fuse all the fusable functions.
We give two examples below to show the limitation of our current
fusion algorithm.

Table 3. Program sizes for typical examples (in byte)
Program − Inline Fusion F/I
sum mapsq 3,567 3,371 3,459 102.6%
sum from 2,278 2,126 2,174 102.3%
foldl from 3,354 3,274 2,546 77.8%
allTrue map 5,011 4,599 4,543 98.8%
sumTree mapsqTree 5,420 4,556 4,596 100.9%

• Two successive applications of the same function.
Our algorithm does not fuse two successive applications of the
same function like the following.

let fun mapsq [] = []
| mapsq (x::xs) = x*x :: mapsq xs

in mapsq (mapsq list)
end

This is because our fusion algorithm performs inlining of each
function only once. We firstly inline the inner application of
mapsq. Then we distribute the outer mapsq to the body of inner
mapsq. After the distribution the fusion algorithm tries to inline
the outer mapsq, but it fails since (the inner) mapsq has already
been inlined.

• Mutually recursive functions.
Our current algorithm does not fuse mutually recursive func-
tions such as the following.

let fun f [] = []
| f (x::xs) = 2 * x :: g xs

and g [] = []
| g (x::xs) = 3 * x :: f xs

fun sum [] = 0
| sum (x::xs) = x + sum xs

in sum (f list)
end

This limitation is due to our simple strategy to treat a pair of
functions (f, g) as a unit of fusion, and to inline each of the
two functions only once during each fusion trial. We believe it
possible to refine this strategy to deal with mutual recursion.
For example, if g is one of mutually recursive set of functions
{g1, . . . , gn}, then one strategy is to try to fuse the set of
pairs {(f, g1), . . . , (f, gn)} simultaneously, with the restriction
that each function is inlined once for each pair. We leave the
refinement to future work.

6. Implementation
We have implemented the lightweight fusion algorithm given in
Section 4. This section describes the overview of the implementa-
tion and discusses several issues we had to cope with when imple-
menting our algorithm.

For the reader to test our implementation or to read the code, we
have made the implementation (including the source code) avail-
able through the Internet for downloading at: http://www.pllab.
riec.tohoku.ac.jp/software/fusion/index.html.

6.1 Implementation in a strict language
The implementation is done by adding an inliner phase to a pro-
totype compiler for SML# [20], which is an extension of Standard
ML, an eager language having imperative features.

The rationale of choosing the SML# compiler is our intention to
investigate the feasibility of program fusion in a strict and impure
language in future. Although fusion has mainly been investigated
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and implemented in lazy languages such as Haskell, the principle
of eliminating redundant intermediate data structure is of course
equally important in strict and impure languages. The major prob-
lem in applying fusion to imperative languages is the preservation
of the order of imperative effects. As we shall examine in details in
6.3, fusion transformation in general changes the order of evalua-
tion and thus its straightforward application to functions with side
effects is unsound. We expect that, with a proper control of interac-
tion between fusion and imperative features, fusion should become
an important optimization for strict and impure languages as well.
We note that this situation is analogous to the relationship between
fusion and non-strict functions in lazy languages.

This issue is outside the scope of the present paper, and we
would like to investigate it elsewhere. Our current implementation
does not properly deal with imperative features. However, it is suf-
ficient for the purpose of the present paper stated in the introduction
section.

6.2 Implementing multiple argument fusion
Our fusion algorithm works on functions with multiple arguments.
We have given the rules for curried and uncurried versions, and our
method works on both versions. Among them, we have only imple-
mented the uncurried version since the SML# compiler performs
uncurry optimization, which transforms multi-parameter functions
in curried form into uncurried intermediate code. For example, the
map function is translated to the following term in the intermediate
language.

[’a,’b. val rec map =
(fn {f, x} =>
(case x of

nil => nil {’b}
| :: y => :: {’b}(f (#1 y), map {f, (#2 y)})
| _ => raise MatchCompBug))]

where {f, x} represents the multiple parameters. Our fusion algo-
rithm for functions with multiple parameters works on this form of
terms.

6.3 Inlining bindings for function applications
In our implementation of the fusion algorithm, some special treat-
ment of bindings is needed in addition to the usual inlining tech-
niques. For the fusion of two functions f and g to succeed, succes-
sive function applications f (g ) should appear during the com-
putation of the (FixPromote) rule for f and g. This implies that a
binding of the form x = g e needs to be inlined during the fusion
of f and g despite the fact that g e is not a value. The strategy we
have implemented is to inline the binding of the form x = g e if
the following conditions are met: (1) the inliner is processing the
fusion for f ◦ g, and (2) x occurs in the context of f x so that the
inlining this binding will induce the replacement of f ◦ g with f g.
This means that successful fusion may change the order of evalua-
tion if there is some computation between the binding x = g e and
the application f x.

Let us describe this strategy and the related issues by tracing
the fusion process for a variant of sum mapsq example, where the
function sum is replaced with the following.

fun dsum [] = 0
| dsum (x::xs) = 2 * x + dsum xs

The function mapsq is compiled to the following intermediate code.

val rec mapsq =
(fn x =>
(case x of

nil => nil
| :: y => bind x = #1 y

in bind xs = #2 y
in ::(*(x,x), mapsq xs) end

end
| _ => raise MatchCompBug))

Firstly, we create a new function name dsum_mapsq and then
distribute dsum into the body of mapsq. In the following, we omit
the raise expression.

(fn x =>
(case x of

nil => dsum (nil)
| :: y => bind x = #1 y

in bind xs = #2 y
in dsum (::(*(x,x), mapsq xs))
end

end))

In the next step, we apply the main function, FM[[ ]], to the ob-
tained term. The case branches pi => ei are processed one by one,
from the top to the bottom. The first case is just inlining of dsum
to the empty list, which results in 0. Note that we allow inlining of
recursive function once. In the next branch, we inline the bindings
bind x = #1 y and bind xs = #2 y. At this point, the term be-
comes as follows.

(fn x =>
(case x of

nil => 0
| :: y => dsum (::(*(#1 y, #1 y),

mapsq (#2 y)))))

We inline the application of dsum to the cons list. When inlining a
function applied to a term of some constructor, we make a binding
for each argument of the constructor or put it in the inliner envi-
ronment, depending on whether or not the argument is small and
so on. In the usual inliner, the term at this point would become as
follows.

(fn x =>
(case x of

nil => 0
| :: y => bind z = *(#1 y, #1 y)

in bind zs = mapsq (#2 y)
in +(*(2,z), dsum zs)
end

end))

However, this does not make the successive application of dsum
and mapsq. So, we allow all the function applications to be put into
the inliner environment with the tag indicating that this should only
be inlined when the inlining makes fusion succeed. In this case
inlining zs makes the successive application, so we inline zs.

(fn x =>
(case x of

nil => 0
| :: y => bind z = *(#1 y, #1 y)
in +(*(2,z), dsum (mapsq (#2 y))
end))

Note that the evaluation order changes by the inlining of zs since a
multiplication occurs immediately after the squaring of the head el-
ement. By replacing the successive applications of dsum and mapsq
with dsum_mapsq, the evaluation order furthermore changes recur-
sively.

(fn x =>
(case x of

nil => 0
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| :: y => bind z = *(#1 y, #1 y)
in +(*(2,z), dsum_mapsq (#2 y))
end))

This result is put into the fusion environment η. Our algorithm
performs this sequence of steps. The following is the actual term
generated by our compiler for the input term.

val rec dsum_mapsq =
(fn $8 =>

(case $8 of
nil => 0

| ::$19 =>
bind newVar = *(#1 $19, #1 $19)
in +(*(2,newVar), dsum_mapsq (#2 $19)) end

| _ => raise MatchCompBug))

Note that an application of a function to a raise expression can be
reduced to the same raise expression with its type appropriately
changed.

Let us remark a related issue concerning both strict and lazy
languages. The inlining of bindings for function applications may
in general cause work duplication. In the above example, if zs
occurs more than once in the scope of the binding zs = mapsq
(#2 y), work duplication occurs even if fusion transformation
succeeds. This reflects the fact that our fusion method is for general
recursive function definitions. There are various ways to cope with
this situation under the trade off between the duplicated work and
the effect of eliminating the production of data structures.

7. Benchmarks and Their Analysis
As we have stated in the introduction section, the purpose of our
implementation is to substantiate the following claims:

• Our lightweight fusion algorithm can be readily implementable
in an inlining phase of an optimizing compiler.

• It does not produce extra runtime overhead.

Our implementation and the performance results indeed verify
these two points. Except for several special treatments described
in the previous section, we were able to implement the algorithm in
a compiler of a full scale language using usual inlining techniques.
As shown in Section 5, the resulting system can fuse various typical
examples discussed in the literature.

To verify the second point, we tested several standard bench-
marks for Standard ML. We measured execution time, heap usage,
and code sizes with or without inlining and fusion transformation.
In the measurement, we made all the other optimizations on, in-
cluding dead code elimination, uncurry optimization, constant fold-
ing, and tail call optimization. Tables 4, 5, and 6 show the bench-
mark results.

They show that our fusion transformation can be safely applied.
When fusion has failed, it just does usual inlining without produc-
ing any runtime overhead. The heap usage and program size are the
same as the case that fusion is off and inlining is on, except for the
vliw benchmark. In the vliw benchmark, fusion occurs twice suc-
cessfully, although the elimination of intermediate data structure
does not affect the execution time so much. Heap usage and file
size increase a little bit in the vliw benchmark when fusion option
is on, since after fusing (f ◦ g) to fg , the definitions of unused f
or g may remain even after the dead code elimination. This is due
to the limitation of our dead code elimination, which judges only
direct death and does not check the transitive death.

Looking at these benchmark results in the perspective of the ef-
fectiveness of fusion method for general ML programs, they would
give a pessimistic impression that fusion would not be effective in
practice. However, we should note that the implementation and the

Table 4. Execution time for benchmarks (in seconds)
Benchmark − Inline Fusion F/I
barneshut 21.0 16.7 16.7 100%
boyer 1.4 1.3 1.3 100%
coresml 89.6 88.6 88.4 100%
countgraphs 199.9 140.2 140.6 100%
fft 24.7 16.1 16.1 100%
knuthbendix 8.0 6.4 6.4 100%
lexgen 19.0 13.2 13.3 101%
life 2.5 2.6 2.6 100%
logic 34.1 26.3 26.4 100%
mandelbrot 13.7 12.3 12.3 100%
mlyacc 2.6 2.3 2.4 100%
nucleic 1.5 1.1 1.1 100%
ray 16.7 14.2 14.2 100%
simple 37.3 23.7 23.6 100%
tsp 8.5 7.3 7.3 100%
vliw 18.1 15.8 15.4 97%

Table 5. Heap allocation for benchmarks (in the number of fields
divided by one thousand)

Benchmark − Inline Fusion F/I
barneshut 102,515.4 94,234.4 94,234.4 100%
boyer 7,138.9 6,874.5 6,874.5 100%
coresml 0.3 0.3 0.3 100%
countgraphs 1,077,263.9 976,271.8 976,271.8 100%
fft 112,517.3 112,517.3 112,517.3 100%
knuthbendix 53,258.9 42,736.9 42,736.9 100%
lexgen 91,378.5 87,839.4 87,839.4 100%
life 4,313.5 3,832.9 3,832.9 100%
logic 180,964.5 119,571.6 119,571.6 100%
mandelbrot 69,444.4 65,241.9 65,241.9 100%
mlyacc 14,731.3 13,843.6 13,843.6 100%
nucleic 11,818.8 3,885.4 3,885.4 100%
ray 87,368.6 84,484.8 84,484.8 100%
simple 172,191.6 130,210.3 130,210.3 100%
tsp 30,313.4 19,851.9 19,851.9 100%
vliw 112,342.8 99,979.7 99,980.4 100%

Table 6. Code sizes for benchmarks (in kilo byte)
Benchmark − Inline Fusion F/I
barneshut 205.4 231.7 231.7 100%
boyer 227.0 227.2 227.2 100%
coresml 1.7 1.5 1.5 100%
countgraphs 92.2 94.3 94.3 100%
fft 36.6 37.7 37.7 100%
knuthbendix 132.8 156.0 156.0 100%
lexgen 243.3 295.6 295.6 100%
life 51.3 62.6 62.6 100%
logic 144.8 154.8 154.8 100%
mandelbrot 8.4 8.3 8.3 100%
mlyacc 1436.8 1641.6 1641.6 100%
nucleic 636.2 583.3 583.3 100%
ray 95.6 104.4 104.4 100%
simple 263.5 347.7 347.7 100%
tsp 70.8 78.5 78.5 100%
vliw 794.6 941.3 944.9 100%
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benchmarks reported in this section are quite preliminary; we per-
formed them only for verifying the above two points. In particular,
we put almost no effort to tune the fusion algorithm against the
compiler and the language. As such, the preliminary results should
not be interpreted as a definite negative evidence of the effective-
ness of our light weight fusion method for strict imperative lan-
guages.

To analyze this issue, we have examined the fusion process of a
few benchmarks and have identified the following three problems
that have prevented fusion from occurring in our current implemen-
tation.

1. Our current implementation only fuses functions if they appear
in a nested let expression. In particular, it cannot fuse any
functions in different compilation units. Since functions in the
basis library are always in different compilation units from that
of the user program, they cannot be fused.

2. The current SML# compiler can only perform uncurrying op-
timization for locally defined functions. All the escaping func-
tions are in curried form. This minimizes the opportunities for
our multiple-parameter function fusion.

3. A function is often defined as a simple call to a locally defined
recursive function. A typical case is a function that uses a tail
recursive auxiliary function. Such a locally defined auxiliary
recursive function is not recognized as a candidate of fusion.

The following code fragment in the “simple” benchmark illustrates
the first two points.

flatten (map (fn k => (map (fn l => f (k,l))
(from(lmin,lmax))))

(from (kmin,kmax)))

The function map is defined in the basis library and is in a curried
form. The following code in the benchmark ray exhibits the third
point.

implode (map fromStr x)

implode is defined in the basis library as follows.

fun implode chars =
let
fun scan [] accum = accum

| scan (char :: chars) accum =
scan chars (accum ^ (Char_toString char))

in
scan chars ""

end

This has a locally defined recursive function inside and the function
implode itself is not a recursive function.

The first problem can be solved by refining our environment
management in such a way that the algorithm maintains an envi-
ronment that keeps the body of each recursive function beyond its
compilation unit. The second point requires either to implement the
fusion rules for curried multi-parameter fusions or to improve the
uncurrying optimization so that it works for non local definitions.
The third point can be solved by inlining non-recursive (small)
functions before fusion.

Remedying these three points and implementing a practical fu-
sion algorithm are beyond the scope of the present paper. Instead,
we have hand-simulated the necessary extensions for the “simple”
benchmark by manually changing the source program. The result
shows that fusion succeeds five times and the execution time de-
creases 5% compared with the case where the other optimizations,
including inlining, are on. From this preliminary analysis, we ex-
pect that if we fine tune our method against the compiler and the

language, our light weight fusion method would show reasonable
speed up over already optimized code.

8. Related Work
In a general perspective, our fusion method can be regarded as a
special case of the fold/unfold method of Burstall and Darlington
[1]. A major problem of applying the general idea of fold/unfold
transformation to automated program optimization is to control
termination and to find a good strategy for folding (i.e. generating
new recursive definitions). Due to this difficulty, there does not
seem to exist an automatic fusion method that directly fuses general
recursive definitions.

In the work of deforestation [23, 3], this problem was solved by
restricting the class of fusable expressions. However, the restric-
tion appears to be too strong for this method to be imporporated in
a practical compiler. In short-cut fusion approach [6] or its exten-
sions [7, 5], the problem was avoided by giving up fusing recursive
definitions and instead developing a specific fusion laws for expres-
sions using foldr and build. Warm fusion [12] and transformation
to hylomorphism forms [9] also avoid this problem by transform-
ing general recursion to specific forms to which short-cut fusion
laws can apply. As we mentioned in the introduction, its practical
feasibility remains to be seen.

Our method appears to be the first successful example that over-
comes the difficulty of generating new recursive definition men-
tioned above and directly fuses general recursive definitions. The
key insight of our approach is that a practical fusion system is ob-
tained by focusing on a specific fusion pattern of recursive function
definition and that this process is expressed by a combination of
syntactic transformation rules without requiring any heuristics.

We share the motivation with the designers and developers of
optimizing compilers with fusion transformation. One notable ex-
ample is the GHC compiler’s rules pragma [17], where the compiler
is extended with a mechanism to specify general rewrite rules. This
mechanism allows programmers, especially the designers of a basis
library, to specify the short-cut fusion [6], its extension [7], array
fusion [2], and many other useful optimizations for functions. Our
system on the other hand allows fully automated fusion for general
recursive function definitions.

There have been some attempts to implement warm fusion,
including a program transformation system Stratego [10] and an
experimental extension to the GHC compiler [15]. However, as
reported in [15], there is some overhead problem because of the
introduction of lambda abstractions. In [16], the GHC compiler is
extended with the hylo fusion system [9]. Given that the underlying
mechanism is more general than warm fusion [12] in the sense that
it can deal with arbitrary data type, the benchmark results reported
in [16] are quite encouraging. Considering the lack of a mechanism
for functions with accumulating parameters such as tail recursive
functions, its practical feasibility remains to be investigated.

Recent work by Katsumata and Nishimura [11] have shown that
short-cut fusion can be generalized to incorporate accumulating
parameters using algebraic properties of functions. This result can
be used to extend automated fusion system such as the one [16] for
wider range of recursive function definitions. But again, it remains
to be seen whether a practically feasible automated optimization
step can be extracted from its involved mathematical development.

Compared with those previous approaches, our method provides
an alternative very light weight fusion method that can be incorpo-
rated to an optimizing compiler.

9. Conclusions and Future Work
We have developed a lightweight fusion method that automati-
cally fuses recursive function definitions. The method is based on
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a new fusion process, called fixed point promotion, that transforms
f ◦ (fix g.λx.E) to a new fixed point term fixh.λx.E′ by pro-
moting the function f through the fixed point operator. We have
shown that this process is represented by the combination of two
new transformation rules (AppDist) and (FixPromote) and have
shown their soundness. We have then given a fusion algorithm by
incorporating these rules in an inlining process. Since these rules
are not sensitive to the types of functions being fused, our fusion
method can be applicable to a wide range of functions including
those with multi-parameters in both curried and uncurried form and
also those that manipulate user-defined general data types. Since
the two new laws are both simple and syntactic ones that only per-
form local transformation without requiring search or other heuris-
tics, our method can be readily incorporated to any standard in-
lining optimization. To demonstrate the practical feasibility of our
method, we have implemented our method in a compiler of a full-
scale functional language, and have successfully tested various ex-
amples including those that cannot be dealt with in any existing real
compiler. The performance result shows that our method does not
introduce runtime overhead for large scale benchmarks.

This is our first step towards developing a practical lightweight
fusion method, and a number of further issues remain to be investi-
gated. The most important one is the evaluation of the feasibility of
our method through a serious implementation. As we have noted,
our current implementation is experimental and requires a num-
ber of refinements as discussed Section 7. Furthermore, our current
implementation does not consider possible imperative effects and
therefore it may not be sound for programs with side effects. We
plan to combine our fusion method with a static effect system and
include in our SML# compiler. Implementing our system in a lazy
language such as GHC would also be a worthwhile future work.

Another interesting direction of research is to investigate vari-
ous formal properties of our fusion lows. We have shown the se-
mantic soundness using denotational semantics. One possible re-
finement wold be to adopt the idea of improvement theorem by
David Sands [18] to our setting. Another important issue is the cor-
rectness in call-by-value semantics. Our correctness theorem (The-
orem 2) depends on call-by-name semantics. A promising approach
toward this direction would be to use the axioms for recursion in
call-by-value by Hasegawa and Kakutani [8].
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