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In this document we explain some supplementary explanation to Hoare
triples and substitutions.

1 A derivation of the Hoare triple in p. 17

We show a derivation of the Hoare triple {true} while true do x:=1 {false}
in p. 17 as follows.

true ⇒ true ∧ true {true} x:=1 {true} (assign)

{true ∧ true} x:=1 {true} (conseq)

{true} while true do x:=1 {true ∧ ¬ true} (while)
true ∧ ¬true ⇒ false

{true} while true do x:=1 {false} (conseq)

In the above derivation tree, {true} x := 1 {true} holds from the assignment
axiom since

true[1/x] = true

holds. In the above derivation we abbreviate the assignment axiom as assign,
the consequence rule as conseq, and the while rule as while.

2 Definition of substitution

Here we define substitution for logical expression, which is used in the as-
signment axiom. Firstly, we assume that the logical expressions used in this
lecture as follows, although it is not explicitly mentioned in the slides because
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of the lack of space.

P := true | false
| P ∧ P | P ∨ P | ¬P | P ⇒ P
| E ≤ E | E ≥ E | E < E | E > E | E = E

E := N
| V
| E + E
| E − E

N := · · · | −2 | −1 | 0 | 1 | 2 | · · ·
V := x | y | z | · · ·

This kind of definition is called inductive definition, which is out of scope of
this lecture. We inductively define substitutions for the logical expressions
defined above as follows, which is also out of scope of this lecture.

P [E/x] = case P of
true → true
false → false
P1 ∧ P2 → P1[E/x] ∧ P2[E/x]
P1 ∨ P2 → P1[E/x] ∨ P2[E/x]
¬P → ¬P [E/x]
P1 ⇒ P2 → P1[E/x] ⇒ P2[E/x]
E1 ≤ E2 → E1[E/x] ≤ E2[E/x]
E1 ≥ E2 → E1[E/x] ≥ E2[E/x]
E1 < E2 → E1[E/x] < E2[E/x]
E1 > E2 → E1[E/x] > E2[E/x]
E1 = E2 → E1[E/x] = E2[E/x]

E[E0/x] = case E of
N → N
E1 + E2 → E1[E0/x] + E2[E0/x]
E1 − E2 → E1[E0/x] − E2[E0/x]
V → if V = x then E0 else V

3 Notation of Hoare triples

People use various notations for Hoare triples. In the slides we used the
notation of the form {P1} S {P2}, while the original paper by Hoare [1] used
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the notation of the form P1 {S} P2, where the statements are surrounded by
braces.

4 A Hoare triple for linear search code

Here, we present a Hoare triple for linear search code, following the content
of Section 3.5 in the reference book [2]. As explained in class, a statement
in an imperative language where the control flow has a single entry and exit
point can be characterized by the conditions that hold at the entry and exit
points (preconditions and postconditions). As an example let us consider
linear search, which can be performed efficiently using a sentinel. In Pascal,
the following code fragment can be used.

A[0] := x;

i := n;

while x <> A[i] do i := i-1

This is a code fragment that performs a linear search to find the position
in array A where the value is equal to x. The operator <> checks if the
values of the expressions on the left and right are not equal. When this code
fragment is executed, the value of variable i will be as follows immediately
after execution:

• If x is within the range of A[1] to A[n], the index of the rightmost
occurrence among them (assuming A[1] . . . A[n] is arranged from left
to right).

• 0 if not found.

We would like to prove that this actually happens using Hoare logic (ex-
tended to handle arrays). To do so, it suffices to prove the following Hoare
triple:

{n≥1}
A[0] := x;

i := n;

while x <> A[i] do i := i-1

{(i=0 ∧ x/∈A[1. . .n]) ∨ (0<i≤n ∧ x=A[i] ∧ x/∈A[i+1. . .n])}
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Here, x /∈ a[i . . . j] denotes that x is not within the range from a[i] to a[j]. It
is assumed to hold if i > j.

The following assumptions are made:

• x contains the value being searched for.

• The indices of array A include the indices 0 to n.

• The search is performed within the range of indices 1 to n in array A.
A[0] is reserved as a sentinel.

• Elements of array A are of integer type, and the variables i, x, and n

are of integer type.

• n ≥ 1

The above Hoare triple holds if {P} while x<>A[i] do i=i-1 {Q} holds,
where P represents

x = A[0] ∧ x /∈ A[i+1 . . . n] ∧ 0 ≤ i ≤ n

and Q represents

x = A[i] ∧ x /∈ A[i+1 . . . n] ∧ 0 ≤ i ≤ n

(Demonstrating this requires extending Hoare logic to support array ele-
ment assignment, which is omitted here.) The proof tree for Hoare triple
{P} while x<>A[i] do i=i-1 {Q} is as follows.

P ∧ x<>A[i] ⇒ P [i-1/i] {P [i-1/i]} i=i-1 {P} (assign)

{P ∧ x<>A[i]} i=i-1 {P} (conseq)

{P} while x<>A[i] do i=i-1 {P ∧ ¬x<>A[i]} (while)
P ∧ ¬x<>A[i] ⇒ Q

{P} while x<>A[i] do i=i-1 {Q} (conseq)
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