Foundations for Programming Languages

Small examination 2

Problem 1 Show the type consistency of the following program fragment, which is

written in the subset of C language presented in the lecture, according to (1) and (2).

int *p;
int x[3];
P =X

1) Rewrite the variable declarations int *p; and int x[3]; in the postfix notation
P p

presented in the lecture.

(2) Show the type consistency of the assignment expression p=x by applying the infer-

ence rules to the declarations of p and x in the postfix notation obtained in (1).

Problem 2 A lambda expression (Az. Ay. x) ((Az. z) w) can be transformed to (Ay. w)

by applying the (reductions. Write the each step of the § reductions. (Although there

are more than one sequences of 3 reductions, write one of them.)

Problem 3 Write the output to the display when executing the following program in

C++.

#include <stdio.h>
class Shape {
public:
virtual void draw (void) {
printf ("Shape\n");
}
3
class Box : public Shape {
void draw (void) {
printf ("Box\n");
}
};

-

~

%

Problem 4

int main (void) {
Shape *s;
s = new Box ();
s->draw();
return O;

Show the output produced by executing the following Pascal program. When the

keyword var is attached to a formal parameter, it designates the parameter as call-by-

reference. The procedure writeln writes out to the standard output the value of the

parameter and a new line character.

program test; begin

var x : integer; X = 3;

var y : integer; y = 4;

procedure swap swap (x,y);
(var x: integer; writeln (x);
var y : integer); writeln (y)

var z : integer; end.

begin
Z = X; X :=Yy; y =2

end;

Problem 5

Show the output produced by executing the following Pascal program. Note that Pascal
is statically (lexically) scoped.

program P; procedure D; begin
var n : char; var n : char; n :=’'L’;
procedure W; begin W;
begin n :="’D’; D
writeln(n) W end.
end; end;
Problem 6

Show the meaning of the following programs (1) and (2) by using the rules presented in
the lecture. Note that the programs are in the small subset of C presented in the lecture.
Let the states before executing the programs both to be o = {(X, 3), (Y, 1),(Z,0)}.

(1) Z=(X+4);

(2) while(M){Y=(Y-1);2}

Rules presented in the lecture
Typing rules
e Rules for function calls, pointers, arrays

e: 7n] e:71() e: T e: 7n|
eli] : 7 e(): 7 ke:T e:1&

e Rule for the & operator where the outermost part of 7 is not &.

e:T e:7& e:7x € :7&
&e: & xe:T e=¢c :7&

Rules for lambda calculus

e 3 reductions

(Ax.M) N " MIN/z]

M —— N
B8

Ax. M T AN MP T) NP

e Substitutions

PMTPN

¢[N/z] = ¢
z[N/z] = N
z[N/yl = = (z#y)
(\y. M if =y
e~ AN ey g FVY)
Az.(M[z/y])[N/z]) f x#y, z#z, ye FV(N),
\ z2¢ FV(M), z¢ FV(N)
(MiM)[N/x] = (Mi[N/z])(M2[N/x])
e Free variables
FV(c) {}
FV(z) = {z}
FV(Ax.M) = FV(M)\ {z}
FV(M\M,) = FV(M,)UFV(M,)

Operational semantics for the small

e Rules for arithmetic expressions

Sequences of numbers: < n,o

subset of C

> — m where m is an integer represented by

the sequence of numbers n in the decimal representation.

Variables: < z,0 > — o(x)
Addition:

<ap,o>— m

< Q9,0 > — My

< (a1 +ag),0 >—m

Subtraction:

<ai,o>— My

< A9,0 > — Mgy

(m is the sum of m; and ms.)

< (ag —ag),o0>—m

Multiplication:

<ay,0>— My

< A9,0 > — My

(m is the difference of m; and my.)

< (a; xay),0 > —m

(m is the product of my and ms.)

e Rules for statements

— Assignments:
<a,oc>—m

<r=a;,0>— om/x

where o[m/x] is defined as follows.

B m ify=ux
@mmmw—{g@)ﬁy#x

— Sequences:

<C,0 > — 01 <C9,01 > — 09
< 1 C,0 > — 09

— while statements:
<a,0>—0

< while (a) {c},0 > — o

<a,0>—m <co>— o <while(a){c},o0>— 09
< while (a) {c},0 > — 09

(if m # 0)

