Foundations for Programming Languages
Answers for small examination 1

Problem 1 Illustrate the quilts represented by the following expressions
(1), (2), and (3) in the language Little Quilt.

AR

(2) let
val x = turn (turn (b))

in
sew (sew (x,x), X)
end

(3) let
fun unturn (x) = turn (turn (turn (x)))
fun pile (x,y) = unturn (sew (turn (y), turn (x)))
val aa = sew (a, a)
val bb = sew (b, b)
val aaaa = pile (aa, aa)

sew (aaaa, turn (bb))
end

R
RR

The meaning of a, b, turn, sew are as follows. The other constructs of
Little Quilt (let expressions, val declarations, fun declarations) have the
meaning explained in the lecture.

e Expressions a and b represent the quilts in Figure 1 and Figure 2 re-
spectively.

e The expression turn (e) represents the quilt obtained by rotating 90
degrees to the right the quilt represented by the expression e.

~

Figure 1: The quilt that a repre-
sents

Figure 2: The quilt that b repre-
sents

e The expression sew (e;, ey) represents the quilt that is obtained by
sewing the two quilts e; and ey, where e; is in the left side and e5 is in
the right side, and they must have the same height.

Problem 2 Answer the following problems about the control flow in the

imperative language presented in the lecture.

(1) Illustrate the control flow of the following program fragment.

if x>0 then x :=x - 1
else if y>0 theny =y - 1

(2) Illustrate the control flow of the following program fragment.

L: x :=x - 1;
if x>0 then goto L;

)

y =1
|
> x:= x-1
TF
y =1

(3) Hlustrate the control flow of the following program fragment.

while x>0 do

begin
if x=3 then
begin
x :=x - 1;
continue
end;
yi=y+1
end

(4) Illustrate the control flow of the following program fragment.

while x>0 do

begin
while y>0 do
begin
if x=3 then
break;
y =y -1
end;
end

(5) How many entries and exits does the if statement (if x=3 then break;)
in the program fragment (4) have?

The if statement has one entry and two exits.

Problem 3
Derive the Hoare triples (1), (2), and (3) by using the rules presented in
the lecture.

(1) {a =40} a:=a—20 {a =20}

a=40=a—20=20 {a—20=20}a:=a—20{a=20} (assign)

{a =40} a:=a—20 {a =20}

a=20=a=20

(conseq)

As I said in the lecture, the logical expression a = 20 = a = 20 in the
above proof tree may be omitted in this class as follows.

a=40=a—-20=20 {a—20=20}a:=a—20 {a =20} (assign)

{a =40} a :=a — 20 {a = 20}

(conseq)

(2) {a=3}a=a+La:=a+3{a=T}

G=3sa+1-4 {afi-dja—arifacdy ™8 4,157 Lis-Tlacat3{a=T]

{a=3}a:=a+1{a=4} {a=4}a:=a+3{a="T7}
{a=3}ta:=a+La:=a+3{a="T}

(conseq)

(composition)

In this proof, I omitted a =4 = a =4 and a =7 = a = 7 in the
applications of the consequence rule.

(3) {a=4}ifa=4thena:=a+3elsea:=a—3{a="T}

Due to space restriction, I write the proof tree by separating it into
three parts.

(assign)

(conseq)

(I write this part below.) (I write this part below.)

{a=4na=4}a:=a+3{a=T} (conseq) {a=4N-a=4}a:=a—-3{a=T} Econfﬁg))
{a=4}ifa=4thena:=a+3elsea:=a—-3{a="7} CORCItiona
(assign)
a=4Na=4=a+3=7 {a+3=T}a:=a+3{a="T}
(conseq)
{a=4Na=4}a:=a+3{a="T}
a=4N-a=4=a—-3=7 {a—-3=T}a:=a—-3{a=T} Easmgn))
{a=4n-a=4}a:=a-3{a=T} consed
(4) {a =2} whilea <5doa:=a+1{a=5}
Due to space restriction, I write the proof tree by separating it into two
parts.
(T write this part below.)
a=2=a<5 {a<b5}whilta<5doa:=a+1{a<5A-a<b} a<bA-a<b=>a=5
{a =2} whilea<5doa:=a+1 {a=>5} (conseq)
G<5Ma<5satl1<s @rl<blamarifa<s ¥ 5. .<5
(conseq)

{a<5Ana<5}a:=a+1{a <5}
{a <5} whilta<5doa:=a+1{a<5A-a<5b}

(while)

In the above proof tree, the logical expression a < 5 = a < 5 may be
omitted as follows.

a<5Na<b=a+1<5 {a+1<5}a:=a+1{a <5} Eass1gn))
{a<b5ANa<b}a:=a+1{a <5} (?onseq
(while)

{a <5} whilea<5doa:=a+1{a<5A-a<5}

[abbreviated the assignment axiom as assign, the consequence rule as conseq,
the while rule as while, and the composition rule as composition.

