
Foundations for Programming Languages
Answers for small examination 1

Problem 1 Illustrate the quilts represented by the following expressions
(1), (2), and (3) in the language Little Quilt.

(1) sew (a, a)

(2) let

val x = turn (turn (b))

in

sew (sew (x,x), x)

end

(3) let

fun unturn (x) = turn (turn (turn (x)))

fun pile (x,y) = unturn (sew (turn (y), turn (x)))

val aa = sew (a, a)

val bb = sew (b, b)

val aaaa = pile (aa, aa)

in

sew (aaaa, turn (bb))

end

The meaning of a, b, turn, sew are as follows. The other constructs of
Little Quilt (let expressions, val declarations, fun declarations) have the
meaning explained in the lecture.

• Expressions a and b represent the quilts in Figure 1 and Figure 2 re-
spectively.

• The expression turn (e) represents the quilt obtained by rotating 90
degrees to the right the quilt represented by the expression e.

1



Figure 1: The quilt that a repre-
sents

Figure 2: The quilt that b repre-
sents

• The expression sew (e1, e2) represents the quilt that is obtained by
sewing the two quilts e1 and e2, where e1 is in the left side and e2 is in
the right side, and they must have the same height.

Problem 2 Answer the following problems about the control flow in the
imperative language presented in the lecture.

(1) Illustrate the control flow of the following program fragment.

if x>0 then x := x - 1

else if y>0 then y := y - 1

x>0

x:=x-1
y>0

y:=y-1

TF

TF

(2) Illustrate the control flow of the following program fragment.

L: x := x - 1;

if x>0 then goto L;

y := 1

x>0x>0

x:= x-1

T F

y := 1

2



(3) Illustrate the control flow of the following program fragment.

while x>0 do

begin

if x=3 then

begin

x := x - 1;

continue

end;

y := y + 1;

end

x>0

x=3

x:=x-1

y:=y+1

TF

TF

(4) Illustrate the control flow of the following program fragment.

while x>0 do

begin

while y>0 do

begin

if x=3 then

break;

y := y - 1

end;

end

3



x>0

y>0

x=3

y := y-1

F T

T

T

F

F

(5) How many entries and exits does the if statement (if x=3 then break;)
in the program fragment (4) have?

The if statement has one entry and two exits.

Problem 3
Derive the Hoare triples (1), (2), and (3) by using the rules presented in

the lecture.

(1) {a = 40} a := a − 20 {a = 20}

a = 40 ⇒ a − 20 = 20 {a − 20 = 20} a := a − 20 {a = 20}
(assign)

a = 20 ⇒ a = 20

{a = 40} a := a − 20 {a = 20}
(conseq)

As I said in the lecture, the logical expression a = 20 ⇒ a = 20 in the
above proof tree may be omitted in this class as follows.

a = 40 ⇒ a − 20 = 20 {a − 20 = 20} a := a − 20 {a = 20} (assign)

{a = 40} a := a − 20 {a = 20} (conseq)

(2) {a = 3} a := a + 1; a := a + 3 {a = 7}

a = 3 ⇒ a + 1 = 4 {a + 1 = 4} a := a + 1 {a = 4}
(assign)

{a = 3} a := a + 1 {a = 4}
(conseq)

a = 4 ⇒ a + 3 = 7 {a + 3 = 7} a := a + 3 {a = 7}
(assign)

{a = 4} a := a + 3 {a = 7}
(conseq)

{a = 3} a := a + 1; a := a + 3 {a = 7}
(composition)

In this proof, I omitted a = 4 ⇒ a = 4 and a = 7 ⇒ a = 7 in the
applications of the consequence rule.

(3) {a = 4} if a = 4 then a := a + 3 else a := a − 3 {a = 7}
Due to space restriction, I write the proof tree by separating it into
three parts.

4



(I write this part below.)
{a = 4 ∧ a = 4} a := a + 3 {a = 7}

(conseq)
(I write this part below.)

{a = 4 ∧ ¬ a = 4} a := a − 3 {a = 7}
(conseq)

{a = 4} if a = 4 then a := a + 3 else a := a − 3 {a = 7}
(conditional)

a = 4 ∧ a = 4 ⇒ a + 3 = 7 {a + 3 = 7} a := a + 3 {a = 7}
(assign)

{a = 4 ∧ a = 4} a := a + 3 {a = 7}
(conseq)

a = 4 ∧ ¬ a = 4 ⇒ a − 3 = 7 {a − 3 = 7} a := a − 3 {a = 7}
(assign)

{a = 4 ∧ ¬ a = 4} a := a − 3 {a = 7}
(conseq)

(4) {a = 2} while a < 5 do a := a + 1 {a = 5}
Due to space restriction, I write the proof tree by separating it into two
parts.

a = 2 ⇒ a ≤ 5

(I write this part below.)

{a ≤ 5} while a < 5 do a := a + 1 {a ≤ 5 ∧ ¬ a < 5} a ≤ 5 ∧ ¬ a < 5 ⇒ a = 5

{a = 2} while a < 5 do a := a + 1 {a = 5}
(conseq)

a ≤ 5 ∧ a < 5 ⇒ a + 1 ≤ 5 {a + 1 ≤ 5} a := a + 1{a ≤ 5}
(assign)

a ≤ 5 ⇒ a ≤ 5
{a ≤ 5 ∧ a < 5} a := a + 1{a ≤ 5}

(conseq)

{a ≤ 5} while a < 5 do a := a + 1 {a ≤ 5 ∧ ¬ a < 5}
(while)

In the above proof tree, the logical expression a ≤ 5 ⇒ a ≤ 5 may be
omitted as follows.

a ≤ 5 ∧ a < 5 ⇒ a + 1 ≤ 5 {a + 1 ≤ 5} a := a + 1{a ≤ 5} (assign)

{a ≤ 5 ∧ a < 5} a := a + 1{a ≤ 5} (conseq)

{a ≤ 5} while a < 5 do a := a + 1 {a ≤ 5 ∧ ¬ a < 5} (while)

I abbreviated the assignment axiom as assign, the consequence rule as conseq,
the while rule as while, and the composition rule as composition.

5


